способ получения сульфоксидов каталитическим окислением тиоэфиров

Классы МПК:C07C315/02 образованием сульфоновых или сульфоксидных групп окислением сульфидов или образованием сульфоновых групп окислением сульфоксидов
C07C317/14 с сульфоновыми или сульфоксидными группами, связанными с атомами углерода шестичленных ароматических колец
B01J23/06 цинка, кадмия или ртути
B01J27/25 нитраты
B01J31/06 содержащие полимеры
Автор(ы):, , , ,
Патентообладатель(и):Институт катализа имени Г.К. Борескова Сибирского отделения Российской Академии наук (RU),
Институт неорганической химии имени А.В. Николаева Сибирского отделения Российской Академии наук (RU)
Приоритеты:
подача заявки:
2008-10-02
публикация патента:

Изобретение относится к области органической химии, а именно к способу получения сульфоксидов каталитическим окисления тиоэфиров в присутствии пероксида водорода, отличающийся тем, что в качестве катализатора используют соединения цинка, такие как соли цинка Zn(NO3)2·6Н2 O или Zn(СН3СОО)2·2Н2O, комплексное соединение цинка Zn(salen), координационные полимеры на основе комплексных соединений цинка, такие как гомохиральные микропористые координационные полимеры состава [Zn2 BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, L-Lac-дианион молочной кислоты, DMF-диметилформамид;

[Zn2camph 2bipy]·3DMF·H2O, где H2 camph - (+)-камфорная кислота, bipy - 4,4'-бипиридил; [Zn 2(bpdc)(R-man)(dmf)]·4DMF·H2O, где H2bpdc - 4,4'-бифенилдикарбоновая кислота, R-man - R-миндальная кислота; [Zn2camph2bpe]·5DMF·H 2O, где bpe-транс-бис(4-пиридил)этилен. Технический результат - разработан способ получения сульфоксидов с высокой конверсией и селективностью. Полученные сульфоксиды широко применяются в синтезе органических соединений, в том числе биологически активных. 4 табл.

Формула изобретения

Способ получения сульфоксидов каталитическим окислением тиоэфиров в присутствие пероксида водорода, отличающийся тем, что в качестве катализатора используют соединения цинка, такие как: соли цинка - Zn(NO3)2·6Н2O или

Zn(СН3СОО)2·2Н2O, комплексное соединение цинка - Zn(salen), координационные полимеры на основе комплексных соединения цинка, такие как гомохиральные микропористые координационные полимеры состава: [Zn2 BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, L-Lac-дианион молочной кислоты, DMF-диметилформамид; [Zn2camph2bipy]·3DMF·H 2O, где H2camph - (+)-камфорная кислота, bipy - 4,4'-бипиридил; [Zn2(bpdc)(R-man)(dmf)]·4DMF·H 2O, где H2bpdc - 4,4'-бифенилдикарбоновая кислота, R-man R-миндальная кислота; [Zn2camph 2bpe]·5DMF·H2O, где bpe-транс-бис(4-пиридил)этилен.

Описание изобретения к патенту

Изобретение относится к области органической химии, а именно к получению сульфоксидов, которые широко применяются в синтезе органических соединений, в том числе биологически активных соединений /Прилежаева Е.Н. Сульфоны и сульфоксиды в полном синтезе биологически активных природных соединений. // Успехи химии, 2000, Т.69, с.403-446/.

Основным подходом к получению сульфоксидов является окисление сульфидов (тиоэфиров) в мягких условиях, обычно при низких температурах, строго дозируя используемый окислитель и подбирая оптимальный растворитель.

Используются H2O2 в различных средах и с различными каталитическими добавками, органические пероксикислоты, гидропероксиды, различные типы галогенсодержащих окислителей, в том числе свободные галогены, азотная кислота и другие азотсодержащие окислители, свободный кислород и другие более сложные реагенты /Прилежаева Е.Н. Химия сульфоксидов и сульфонов //Получение и свойства органических соединений серы, Л.И.Беленький, ред., Москва, Химия, 1998/. Большинство процессов имеют ряд недостатков, таких как (1) дороговизна (и непригодность для промышленного применения), (2) недостаточная экологическая безопасность, (3) невысокая селективность: на практике зачастую сложно остановить окисление на первой стадии, и большинство каталитических способов окисления приводят к образованию примесей сульфона в продуктах реакции. Поэтому поиск новых высокоселективных каталитических систем на основе доступных незагрязняющих окружающую среду металлов (желательно биоэлементов, таких как Zn, Fe) и дешевых нетоксичных окислителей (например, пероксида водорода) является важной и актуальной задачей.

В данной работе предлагается новый способ получения сульфоксидов, основанный на процессе селективного окисления сульфидов пероксидом водорода, катализируемом соединениями цинка.

Предложен способ окисления тиоэфиров в сульфоксиды пероксидом водорода (либо его аддуктом с карбамидом H2O2·(NH 2)2CO, далее обозначенным UHP), в котором в качестве катализатора используют соли цинка, например Zn(NO 3)2·6H2O и Zn(СН3 СОО)2·2H2O, или комплексные соединения цинка, например, N,N'-бис(3,5-дитретбутилсалицилиден)-1,2-циклогександиамин цинк(II) (Zn(salen)), или координационные полимеры на основе комплексов цинка, например, гомохиральные микропористые координационные полимеры состава: [Zn2BDC(L-Lac)·DMF]·(DMF) x (где BDC - дианион терефталевой кислоты, Z-Lac-дианион молочной кислоты, DMF-диметилформамид, х=0÷1), [Zn2 camph2bipy]·3DMF·H2O (где H 2camph - (+)-камфорная кислота, bipy - 4,4'-бипиридил), [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2 O (где H2bpdc - 4,4'-бифенилдикар6оновая кислота, R-man - R-миндальная кислота), [Zn2camph2 bpe]·5DMF·H2O (где bpe-транс-бис(4-пиридил)этилен).

Несмотря на значительное число способов получения сульфоксидов /Прилежаева Е.Н. Химия сульфоксидов и сульфонов // Получение и свойства органических соединений серы, Л.И.Беленький, ред., Москва, Химия, 1998/, в литературе до сих пор не было описано примеров окисления сульфидов (тиоэфиров) в сульфоксиды, катализируемых соединениями цинка. Наши исследования показали, что соли цинка способны катализировать селективное окисление тиоэфиров до сульфоксидов пероксидом водорода. Так, при использовании в качестве катализатора Zn(NO3)2·6H2O окисление алкиларилсульфидов пероксидом водорода происходило с конверсией и селективностью до 100% (таблица 1). Это гомогенный процесс; для растворения Zn(NO3)2·6H2 O и пероксида водорода необходимо использовать полярные растворители. Количественное превращение может достигаться при использовании не более 10 моль.% катализатора; оптимальное соотношение окислитель:субстрат равняется двум. Обнаружено также, что другие соли цинка, например

Zn(CH3COO)2·2H2 O также проявляют ненулевую каталитическую активность в селективном окислении тиоэфиров в сульфоксиды пероксидом водорода. Конверсия исходного сульфида достигала 11% при селективности 100% при проведении реакции в течение 16 часов (таблица 1 эксперимент 15).

Подобные каталитические свойства характерны не только для солей цинка, но и для комплексных соединений цинка(II). Так, комплекс N,N'-бис(3,5-дитретбутилсалицилиден)-1,2-циклогександиамин цинк(II) (далее обозначенный Zn(salen)) также способен катализировать окисление тиоэфиров в сульфоксиды пероксидом водорода (таблица 2).

Кроме того, показано, что микропористый координационный полимер [Zn2BDC·(L-Lac)·DMF]·(DMF) x(1·(DMF)x, x=0÷1) /Dybtsev D.N., Nuzhdin A.L., Chun H., Bryliakov K.P., Taisi E.P., Fedin V.P., Kim K. A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity // Angew. Chem. Int. Ed., 2006, v.45, p.916-920/ катализирует селективное гетерогенное окисление тиоэфиров до сульфоксидов дешевым и экологически безопасным окислителем - пероксидом водорода. Результаты гетерогенного окисления сульфидов, катализируемого [Zn2BDC·(L-Lac)·DMF]·(DMF)x (x=0÷1), представлены в таблице 3. В экспериментах по каталитическому окислению тиоэфиров, имеющих небольшие заместители (PhSMe, p-BrPhSMe) с 1·(DMF)x (x=1; способ получения сульфоксидов каталитическим окислением тиоэфиров, патент № 2374225 0.4) наблюдаются высокие конверсии и высокая селективность окисления после 16 ч каталитической реакции, тогда как тиоэфиры с объемными заместителями (эксперимент № 3) окисляются с низкой конверсией. Размерная селективность в каталитических реакциях объясняется тем, что реакция главным образом происходит внутри микропор каркаса 1·(DMF)x . Поскольку PhCH2SPh в силу больших размеров не может проникать в поры 1·(DMF)x, его окисление может происходить только на поверхности полимера, что приводит к чрезвычайно низким величинам конверсии. Раствор, полученный перемешиванием 1·(DMF)0.4 в 2 мл CH2Cl2 в течение 12 ч с последующим отделением твердой фазы с помощью фильтрования и центрифугирования, не проявляет каталитической активности в окислении тиоэфиров. Таким образом, при перемешивании не происходит вымывания активных центров, что также является подтверждением гетерогенного характера каталитической реакции. Каждая формульная единица [Zn2] способна выполнять не менее 30 каталитических циклов. Полимер 1·(DMF)x , из которого практически полностью удален DMF (х=0), демонстрирует низкую конверсию в окислении сульфидов. Вероятно, это связано с частичным разрушением каркаса и схлопыванием пор при удалении значительного количества диметилформамида. Несмотря на то, что полимер 1·(DMF)x обладает свойством гомохиральности (т.к. при его синтезе была использована оптически чистая L-молочная кислота), в результате окисления получается рацемическая смесь сульфоксидов. В случае необходимости рацемическая смесь может быть разделена на чистые энантиомеры любым из известных способов (кристаллизацией, разделением через диастереомеры либо с помощью энантиоселективной хроматографии).

Было установлено, что не только [Zn2BDC·(L-Lac)·DMF]·(DMF) x проявляет каталитическую активность в реакциях селективного окисления тиоэфиров в сульфоксиды. Другие координационные полимеры на основе комплексных соединений цинка, например [Zn2 camph2bipy]·3DMF·H2O, [Zn 2camph2bpe]·5DMF·H2O и [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2 O, также проявляют каталитическую активность (см. таблицу 4). Следует отметить, что вышеперечисленные пористые координационные полимеры - первые представители класса координационных полимеров, демонстрирующие каталитическую активность и высокую селективность в реакциях сульфоксидирования.

Таким образом, установлено, что соединения цинка способны катализировать окисление тиоэфиров пероксидом водорода с конверсией и селективностью до 100%. В реакциях окисления каталитическую активность проявляют как соли, так и координационные соединения цинка.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров пероксидом водорода с Zn(NO 3)2·6H2O либо Zn(СН3 СОО)2·2H2O в качестве катализатора

Сульфид (тиоэфир) (0.15 ммоль) растворяют в 1.5 мл полярного растворителя (CH3CN, MeOH либо H2 O), добавляют катализатор (10-20 мол. %) и H2O 2 (0.3 ммоль) и перемешивают в течение 3-24 ч при комнатной температуре. По окончании реакции удаляют растворитель. Продукты реакции выделяют с помощью колоночной хроматографии (SiO 2, элюент: гексан/этилацетат) и анализируют с помощью спектроскопии 1Н ЯМР в CCl4 или CDCl3.

В таблице 1 приведены результаты экспериментов по получению рацемического сульфоксидов окислением соответствующих сульфидов пероксидом водорода с применением соли цинка Zn(NO 3)2·6H2O и Zn(СН3 СОО)2·2H2O в качестве катализатора.

Пример 2.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров пероксидом водорода с Zn(salen) в качестве катализатора

Сульфид (тиоэфир) (0.1 ммоль) растворяют в 1.5 мл полярного растворителя (CH3 CN либо CH3CN/CH2Cl2), добавляют катализатор (5-8 мол. %) и H2O2 (0.11 ммоль) и перемешивают в течение 3-19 ч при Т=25°С. По окончании реакции удаляют растворитель. Продукты реакции выделяют с помощью колоночной хроматографии (SiO2, элюент: гексан/этилацетат) и анализируют с помощью спектроскопии 1Н ЯМР в CCl 4.

В таблице 2 приведены результаты экспериментов по получению рацемического сульфоксида окислением соответствующего сульфида пероксидом водорода с применением комплекса цинка Zn(salen) в качестве катализатора.

Пример 3.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров (сульфидов) пероксидом водорода с [Zn2·BDC·(L-Lac)·DMF]·(DMF) x в качестве катализатора

Смесь сульфида (0.1 ммоль, 1 экв), 1·(DMF)x ([Zn2 ·BDC·(L-Lac)·DMF]) и окислителя

H2O2 (в виде 90% или 30% водного раствора) либо аддукта H2O2 с мочевиной

H2O2·(NH2)2CO (UHP) растворяют в CH2Cl2 или CH3 CN (либо их смеси различного состава). Смесь, общий объем которой был 2 мл, перемешивают 16 ч при комнатной температуре. Полимер отфильтровывают, сорбированный сульфоксид экстрагируют метанолом (3×3 мл). Экстракт и фильтрат комбинируют, удаляют растворитель и DMF в вакууме. Оптический выход и соотношение продуктов реакции определяют с помощью спектроскопии 1Н ЯМР с Eu(hfc) 3 в CCl4 или COCl3.

В таблице 3 приведены более подробно условия получения рацемических сульфоксидов окислением соответствующих сульфидов пероксидом водорода с применением координационного соединения цинка [Zn 2·BDC·(L-Lac)·DMF]·(DMF)x в качестве катализатора.

Пример 4.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров (сульфидов) пероксидом водорода с [Zn2camph 2bipy]·3DMF·H2O, [Zn2camph 2bpe]·5DMF·H2O и [Zn2(bpdc)(R-man)(dmf)]·4DMF·H 2O в качестве катализатора

Смесь сульфида (0.15 ммоль, 1 экв), соответствующего координационного полимера и окислителя H2O2 (в виде 30% водного раствора) растворяют в CH3CN. Смесь, общий объем которой был 1.5 мл, перемешивают 16 ч при комнатной температуре. Полимер отфильтровывают, сорбированный сульфоксид экстрагируют метанолом (3×3 мл). Экстракт и фильтрат комбинируют, удаляют растворитель и DMF в вакууме. Оптический выход и соотношение продуктов реакции определяют с помощью спектроскопии 1Н ЯМР с Eu(hfc) 3 в CCl4 или COCl3.

Результаты каталитических реакций приведены в таблице 4.

способ получения сульфоксидов каталитическим окислением тиоэфиров, патент № 2374225

способ получения сульфоксидов каталитическим окислением тиоэфиров, патент № 2374225

Таблица 4
Гетерогенное окисление тиоэфиров (сульфидов), катализируемое координационными полимерами на основе комплексов цинка [Zn 2camph2bipy]·3DMF·H2O и [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2 O.
Сульфид Координационный полимер Zn:сульфид Конверсия [%][a] Селективность[%][b]
1PhSMe [Zn2camph2bipy]·3DMF·H2 O1:30 3097
2 PhSCH2Ph [Zn2camph2bipy]·3DMF·H2 O1:30 1799
3 PhSMe[Zn2 camph2bpe]·5DMF·H2O 1:3028 96
4 PhSCH2Ph [Zn2(bpdc)(R-man)(dmf)]·4DMF·H 2O1:30 70 99
Условия реакции: сульфид (0.15 ммоль), CH3CN (1.5 мл), в качестве катализатора использовали 10 мг полимера, H 2O2 30% (0.30 ммоль), перемешивание при комнатной температуре в течение 16 ч
[a]Конверсия =([RSOR']+[RSO2R']/([RSOR']+[RSO 2R']+[RSR']);
[b]Селективность =[RSOR']/([RSOR']+[RSO 2R']).

Скачать патент РФ Официальная публикация
патента РФ № 2374225

patent-2374225.pdf

Класс C07C315/02 образованием сульфоновых или сульфоксидных групп окислением сульфидов или образованием сульфоновых групп окислением сульфоксидов

соединения для лечения воспаления -  патент 2520034 (20.06.2014)
способ получения диметилсульфона -  патент 2490254 (20.08.2013)
способ получения сульфоксидов -  патент 2448954 (27.04.2012)
способ получения диметилсульфоксида -  патент 2440336 (20.01.2012)
способ получения диметилсульфоксида -  патент 2409561 (20.01.2011)
энантиоселективный способ получения производных сульфоксидов -  патент 2380357 (27.01.2010)
способ получения диметилсульфона -  патент 2377235 (27.12.2009)
производные феноксиуксусной кислоты -  патент 2360901 (10.07.2009)
способ получения сульфоксидов каталитическим окислением тиоэфиров -  патент 2349583 (20.03.2009)
синтез кислородзамещенных бензоциклогептенов в качестве ценных промежуточных продуктов для получения тканеселективных эстрогенов -  патент 2310643 (20.11.2007)

Класс C07C317/14 с сульфоновыми или сульфоксидными группами, связанными с атомами углерода шестичленных ароматических колец

безотходный способ получения полиметиленнафталинсульфонатов с регулируемым низким содержанием сульфата натрия -  патент 2527546 (10.09.2014)
замещенные бензоиламиноиндан-2-карбоновые кислоты и родственные соединения -  патент 2477279 (10.03.2013)
триэтиламмониевая соль тозилметакриловой кислоты, способ ее получения и применение в качестве регулятора роста сельскохозяйственных растений -  патент 2448088 (20.04.2012)
производные n-гидроксилсульфонамида в качестве новых физиологически полезных доноров нитроксила -  патент 2448087 (20.04.2012)
способ получения циклических дикетонов -  патент 2384562 (20.03.2010)
замещенные феноксиуксусные кислоты, обладающие модулирующей активностью в отношении рецепторов crth2 -  патент 2372330 (10.11.2009)
производные феноксиуксусной кислоты -  патент 2360901 (10.07.2009)
способ получения сульфоксидов каталитическим окислением тиоэфиров -  патент 2349583 (20.03.2009)
способ получения оптически чистых сульфоксидов -  патент 2336265 (20.10.2008)
способ получения ароматических сульфонов -  патент 2243966 (10.01.2005)

Класс B01J23/06 цинка, кадмия или ртути

способ дегидрирования циклогексанола в циклогексанон -  патент 2525551 (20.08.2014)
фотокатализатор, способ его приготовления и способ получения водорода -  патент 2522605 (20.07.2014)
цеолитсодержащий катализатор депарафинизации масляных фракций -  патент 2518468 (10.06.2014)
способ эксплуатации реактора для высокотемпературной конверсии -  патент 2516546 (20.05.2014)
способ получения олефиновых углеводородов c3-c5 и катализатор для его осуществления -  патент 2514426 (27.04.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)
способ одновременного получения ароматических углеводородов и дивинила в присутствии инициатора пероксида водорода -  патент 2509759 (20.03.2014)
катализатор для применения в высокотемпературной реакции сдвига и способ обогащения смеси синтез-газа водородом или монооксидом углерода -  патент 2498851 (20.11.2013)
катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления -  патент 2497585 (10.11.2013)
способ одновременного получения ароматических углеводородов и дивинила -  патент 2495017 (10.10.2013)

Класс B01J27/25 нитраты

Класс B01J31/06 содержащие полимеры

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
твердый катализатор, используемый для превращения алкиленоксида в алкиленгликоль -  патент 2470706 (27.12.2012)
катализатор для олигомеризации альфа-олефинов, способ его получения и способ олигомеризации альфа-олефинов -  патент 2462310 (27.09.2012)
способ переэтерификации -  патент 2452725 (10.06.2012)
экструдаты неорганических оксидов -  патент 2451545 (27.05.2012)
способ биохимической очистки сточных вод -  патент 2448056 (20.04.2012)
катализатор на углеродной основе для десульфуризации дымовых газов, и способ его получения, и его использование для удаления ртути в дымовых газах -  патент 2447936 (20.04.2012)
способ удаления йодидного соединения из органической кислоты -  патент 2440968 (27.01.2012)
нанокатализатор на основе переходного металла, способ его приготовления и использование в реакции синтеза фишера-тропша -  патент 2430780 (10.10.2011)
способ получения катализатора отверждения -  патент 2424848 (27.07.2011)
Наверх