наноэлектронный полупроводниковый смесительный диод

Классы МПК:H01L29/72 приборы типа транзисторов, те способные непрерывно реагировать на приложенные управляющие сигналы
B82B1/00 Наноструктуры
Автор(ы):, , , , , , , ,
Патентообладатель(и):Федоров Игорь Борисович (RU),
Шашурин Василий Дмитриевич (RU),
Иванов Юрий Александрович (RU),
Мешков Сергей Анатольевич (RU),
Гармаш Виктор Федосеевич (RU),
Федоренко Иван Александрович (RU),
Леушин Виталий Юрьевич (RU),
Башков Валерий Михайлович (RU),
Федоркова Нина Валентиновна (RU)
Приоритеты:
подача заявки:
2008-08-19
публикация патента:

Изобретение относится к полупроводниковым приборам и приборам радиотехники и может быть использовано для смешивания сигналов в радиотехнической и радиоизмерительной аппаратуре и в микроэлектромеханических системах. Сущность изобретения: в наноэлектронном полупроводниковом диоде, состоящем из двух контактных областей, выполненных из легированного GaAs, спейсеров, выполненных из GaAs, и гетероструктуры в составе трех чередующихся областей: потенциальных барьеров, выполненных из AlyGa1-y As, где у - молярная доля Al, и расположенной между ними потенциальной ямы, различающихся шириной запрещенной зоны и толщиной слоя, потенциальная яма выполнена из GaAs и при концентрации Si в контактных областях 3×1018-5×1018 1/см 3, толщина слоя ямы составляет от 10 до 19 атомарных слоев, молярная доля Al в барьерных слоях составляет от 0,4 до 1, толщина барьера составляет от 6 до 30 атомарных слоев. Изобретение позволяет обеспечить создание смесительного диода с формой вольт-амперной характеристики, обеспечивающей расширение рабочей полосы частот при одновременном увеличении динамического диапазона и уменьшении потерь преобразования смесителя. 2 ил. наноэлектронный полупроводниковый смесительный диод, патент № 2372693

наноэлектронный полупроводниковый смесительный диод, патент № 2372693 наноэлектронный полупроводниковый смесительный диод, патент № 2372693

Формула изобретения

Наноэлектронный полупроводниковый диод, состоящий из двух контактных областей, выполненных из легированного GaAs, спейсеров, выполненых из GaAs, и гетероструктуры в составе трех чередующихся областей, потенциальных барьеров, выполненных из Aly Ga1-yAs, где у - молярная доля Al, и расположенной между ними потенциальной ямы, различающихся шириной запрещенной зоны и толщиной слоя, отличающийся тем, что потенциальная яма выполнена из GaAs и при концентрации Si в контактных областях 3·1018-5·1018 1/см3 толщина слоя ямы составляет от 10 до 19 атомарных слоев, молярная доля А1 в барьерных слоях составляет от 0,4 до 1, толщина барьера составляет от 6 до 30 атомарных слоев.

Описание изобретения к патенту

Изобретение относится электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для смешивания сигналов в радиоаппаратуре, радиоизмерительных приборах и в микроэлектромеханических системах.

Известны смесительные диоды (диод с барьером Шоттки, биполярный диод), имеющие экспоненциальную форму вольт-амперной характеристики (см. Георгиевский A.M. и др. Исследование направлений применения резонансно-туннельного диода в интегральных схемах СВЧ-диапазона. М.: Микроэлектроника, 1996, т.25, № 4, с.240-258).

Недостатком известных диодов является высокий уровень мощности высших гармоник обрабатываемых сигналов и их интермодуляционных составляющих в спектре выходного сигнала смесителя.

Смесительный диод должен обладать вольт-амперной характеристикой (ВАХ) вида:

I(U)=aU X, I(U)=aUX,

где U - напряжение на диоде, I - ток через диод, а - коэффициент, лежит в пределах от 0,01 до 50, х - показатель степени ВАХ диода, лежит в пределах от 2 до 5 и зависит от типа и конструкции смесителя.

Нелинейные преобразователи - обязательная часть радиоэлектронной системы. Наиболее часто используются следующие типы преобразований: генерация радиосигнала, ограничение мощности, смешивание радиосигнала или перенос частоты, детектирование. Радиоэлектронная система может содержать умножитель частоты, генератор частотной сетки и др. В СВЧ-диапазонах нелинейные преобразователи часто создаются на базе диодов.

В частности, в смесителях, переносчиках частоты и умножителях частоты применяются диоды с экспоненциальной ВАХ. Поэтому и не ставится вопрос об оптимизации формы ВАХ под нужное нелинейное преобразование. Оптимизация результата преобразования проводится за счет включения в цепи преобразователя частотных фильтров. Это усложняет его схему, повышает цену и снижает надежность. Но, главное, отрицательно влияет на технические характеристики. Например, в смесителях это сужает полосу частот по входу усилителя промежуточной частоты (ПЧ) и динамический диапазон.

С появлением наноэлектроники возникла возможность создавать диоды с заранее заданными формами ВАХ, что в корне меняет ситуацию и позволяет улучшать характеристики преобразователей за счет оптимизации формы ВАХ нелинейного элемента - диода. Например, нанодиоды на базе многослойных гетероструктур с поперечным токопереносом могут иметь разнообразные формы ВАХ.

Наиболее близким к данному техническому решению является наноэлектронный полупроводниковый диод (см. US 6229153, кл. H01L 29/72, 08.05.2001), содержащий слоистую структуру, состоящую из слоя легированного арсенида галия (GaAs), слоя нелегированного GaAs, слоя Al yGa1-yAs, образующего первый потенциальный барьер, слоя InGaAs, представляющего энергетическую потенциальную квантовую яму, затем слоя AlyGa1-yAs, образующего второй потенциальный барьер, а также слоев нелегированного GaAs и легированного GaAs.

По мере возрастания приложенного напряжения к наружным слоям легированного GaAs ток, протекающий через слои, первоначально нелинейно возрастает до своего пикового значения, затем убывает при отстройке от резонанса и далее возрастает из-за возникновения механизмов токопереноса, отличных от резонансного туннелирования.

Недостатком известного диода является форма начального участка ВАХ, которая не оптимизирована для смешивания сигналов, что дает высокий уровень мощности высших гармоник обрабатываемых сигналов и их интеркомбинационных составляющих на выходе смесителя.

Технический результат, на достижение которого направлено изобретение, заключается в создании смесительного диода с формой ВАХ, обеспечивающей расширение рабочей полосы частот при одновременном увеличении динамического диапазона и уменьшении потерь преобразования смесителя.

При классическом теоретическом анализе с использованием тригонометрических преобразований показано [Гоноровский И.С. Радиотехнические цепи и сигналы: учеб. пособие для ВУЗов, 5-е изд. М.: Дрофа, 2006, с.324, 719 с.], что в случае малой активной нагрузки смесителя и использования в нем диода с квадратичной ВАХ в спектре тока на выходе смесителя присутствуют лишь постоянная составляющая, первые и вторые гармоники сигнала и гетеродина и комбинационные частоты второго порядка. В реальных конструкциях радиоаппаратов, радиоизмерительных приборов и микроэлектромеханических систем сигнал промежуточной частоты со смесителя передается на усилитель промежуточной частоты, для чего требуется преобразование тока в напряжение. Поэтому нагрузка реального смесителя составляет сотни Ом. В этом случае для уменьшения уровня интермодуляционных составляющих, т.е. снижения потерь преобразования и одновременного расширения рабочей полосы частот и увеличения динамического диапазона смесителя, предлагается использовать диод с ВАХ вида I(U)=aU X, где U - напряжение на диоде, I - ток через диод, а - коэффициент, лежит в пределах от 0,01 до 50, х - показатель степени ВАХ диода, лежит в пределах от 2 до 5 [Иванов Ю.А., Федоркова Н.В., Шалаев В.А. Наноэлектроника в СВЧ нелинейных преобразователях для радиолокации. Радиооптические технологии в приборостроении. Тезисы докладов 1 Научно-технической конференции, 8-12 сентября 2003, Сочи, Москва, Издательство МГТУ им. Н.Э.Баумана, 2003, с.15-19].

Указанный технический результат достигается также тем, что в наноэлектронном полупроводниковом диоде, состоящем из двух контактных областей, выполненных из легированного GaAs, спейсеров, выполненных из GaAs, и гетероструктуры в составе трех чередующихся областей: потенциальных барьеров, выполненных из AlyGa1-yAs, где у - молярная доля Al, и расположенной между ними потенциальной ямы, потенциальная яма выполнены из GaAs и при концентрация Si в контактных областях 3×1018наноэлектронный полупроводниковый смесительный диод, патент № 2372693 5×1018 1/см, толщина слоя ямы составляет от 10 до 19 атомарных слоев, молярная доля Al в барьерных слоях составляет от 0,4 до 1, толщина барьера составляет от 6 до 30 атомарных слоев.

На фиг.1 приведены виды вольт-амперных характеристики различных диодов. На оси ординат фиг.1 приведены значения U - напряжение на диоде, на оси абцисс приведены значения тока - I в относительных единицах.

На фиг.2 приведен один из вариантов конструктивного исполнения диода. Наноэлектронный полупроводниковый диод состоит из двух контактных областей 1, выполненных из легированного GaAs, спейсеров 2, выполненных из GaAs, и гетероструктуры в составе трех чередующихся областей: потенциальных барьеров 3, выполненных из AlyGa 1-yAs, где у - молярная доля Al, и расположенной между ними потенциальной ямы 4, различающихся шириной запрещенной зоны и толщиной слоя. Потенциальная яма выполнена из GaAs и при концентрация Si в контактных областях составляет 3×1018наноэлектронный полупроводниковый смесительный диод, патент № 2372693 5×1018 1/см3, толщина ямы составляет от 10 до 19 атомарных слоев, молярная доля Al в барьерных слоях составляет от 0,4 до 1, толщина барьера составляет от 6 до 30 атомарных слоев.

Указанные параметры и химический состав слоев диода позволяют создать смесительный диод с формой ВАХ 1, приведенной на фиг.1, обеспечивающей расширение рабочей полосы частот при одновременном увеличении динамического диапазона и уменьшении потерь преобразования смесителя. Для сравнения на фиг.1 приведены ВАХ 2 прототипа и ВАХ 3 аналога.

При выходе параметров и химического состава слоев диода за границы указанных интервалов форма ВАХ будет отличаться от ВАХ 1, что приведет к невозможности получения заявленного технического результата. Например, уменьшение толщины слоя ямы, либо увеличение концентрации Al в барьерных слоях, либо уменьшение концентрация Si в контактных областях приводит к увеличению х в выражении

I(U)=aUX, что, в свою очередь, приводит к значительному увеличению потерь преобразования смесителя.

Ток, протекающий через диод в реальном смесителе, зависит от ВАХ диода, которая определяется его гетероструктурой, конструкции смесителя и суммарного комплексного сопротивления цепи смесителя для тока гетеродина. Ток при заданном напряжении гетеродина в цепи из одного диода с заданной формой ВАХ и ток в реальном смесителе с этим диодом отличаются. Таким образом, выбор формы ВАХ диода (степени х и коэффициента а в выражении I(U)=aUX) и соответствующих параметров гетероструктуры ведется в процессе проектирования смесителя и зависит от его конструкции и электрического режима работы. Исследования, проведенные авторами, показали, что в реальных смесителях СВЧ для снижения потерь преобразования, расширения рабочей полосы частот и увеличения динамического диапазона величина х в выражении I(U)=aUX должна лежать в диапазоне от 2 до 5, коэффициент а - в пределах от 0,01 до 50.

Проведенные авторами эксперименты [Иванов Ю.А., Федоркова Н.В., Шалаев В.А. Наноэлектроника в СВЧ нелинейных преобразователях для радиолокации. Радиооптические технологии в приборостроении. Тезисы докладов 1 Научно-технической конференции, 8-12 сентября 2003, Сочи, Москва, Издательство МГТУ им. Н.Э.Баумана, 2003, с.15-19] на имеющейся технологической базе показали, что диоды с указанными выше характеристиками способны существенно улучшить параметры смесителей.

Класс H01L29/72 приборы типа транзисторов, те способные непрерывно реагировать на приложенные управляющие сигналы

свч-транзистор -  патент 2518498 (10.06.2014)
биполярный транзистор свч -  патент 2517788 (27.05.2014)
светотранзистор с высоким быстродействием -  патент 2507632 (20.02.2014)
самосовмещенный высоковольтный интегральный транзистор -  патент 2492551 (10.09.2013)
полупроводниковая структура инвертора -  патент 2444090 (27.02.2012)
транзистор на основе полупроводникового соединения -  патент 2442243 (10.02.2012)
мощная высокочастотная транзисторная структура -  патент 2403651 (10.11.2010)
мощный вч и свч транзистор -  патент 2403650 (10.11.2010)
мощный вч и свч широкополосный транзистор -  патент 2402836 (27.10.2010)
наноэлектронный полупроводниковый смесительный диод -  патент 2372694 (10.11.2009)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)
Наверх