способ приготовления биофункционального трансплантата в виде наночастиц

Классы МПК:A61K35/12 материалы из млекопитающих животных или птиц
A61K9/14 в виде частиц, например порошки
A61L27/54 биологически активные материалы, например терапевтические вещества
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, , , ,
Патентообладатель(и):ГУЗ "Республиканская офтальмологическая клиническая больница МЗ УР" (RU)
Приоритеты:
подача заявки:
2008-01-09
публикация патента:

Изобретение относится к медицине, в частности к офтальмологии и трансплантологии, и касается способа приготовления биологических материалов, измельченных до аморфного порошка. Предложен способ приготовления биофункционального трансплантата в виде наночастиц, включающий забор у донора, промывание в стерильном изотоническом растворе натрия хлорида, лиофильную сушку и механическое измельчение, при этом полученный порошок биологического материала измельчают в измельчительных устройствах до наночастиц размерами от 60 до 140 нм при величине подведенной удельной энергии 0,4-100 кДж/г. Изобретение обеспечивает создание способа, позволяющего приготавливать биологические трансплантаты с измельчением их до вида наночастиц, в котором они более эффективно усваиваются организмом.

Формула изобретения

Способ приготовления биофункционального трансплантата в виде наночастиц, включающий забор у донора, промывание в стерильном изотоническом растворе натрия хлорида, лиофильную сушку и механическое измельчение, отличающийся тем, что полученный порошок биологического материала измельчают в измельчительных устройствах до наночастиц размерами от 60 до 140 нм при величине подведенной удельной энергии 0,4-100 кДж/г.

Описание изобретения к патенту

Изобретение относится к медицине, в частности к офтальмологии и трансплантологии, и касается способа приготовления биологических материалов, измельченных до аморфного порошка.

Известен способ приготовления композиционного материала (1) на основе алюмооксидной пенокерамики и нанокристаллического гидроксиапатита с размерами пор от 250 до 450 нм, используемого в трансплантологии для интегрирования в ткани организма человека, а также в качестве основы для фиброваскуляризационных процессов в тканях реципиента.

Однако, по нашему мнению, интегрирование таких материалов в организме человека происходит не путем диффузии вещества в ткани реципиента, а за счет образовании фиброзной капсулы вокруг искусственного материала, при этом неоваскуляризация минимальна, что является существенным недостатком данного способа.

Известно использование взвеси плаценты для инъекции (2). При этом плаценту человека после отделения от амниона и промывания в изотоническом растворе натрия хлорида тонко измельчают на холоде. После чего она представляет собой гомогенную взвесь красновато-коричневого цвета с характерным запахом. Применяют как биогенный стимулятор при различных заболеваниях глаз, а также подкожно, предварительно растворив в 0,5%-ном растворе новокаина.

Недостатками данного метода является низкая биоусвояемость организмом применяемой лекарственной формы вследствие невозможности захвата и переноса крупных частиц плаценты (более 1 мкм) иммунокомпетентными клетками, макрофагами в частности, что значительно уменьшает ее проникновение в ткани реципиента и снижает эффективность использования в качестве биогенного стимулятора.

Известен способ создания материала для имплантации в костные структуры (3), взятого за прототип, состоящего из пористого керамического материала, наполненного наночастицами гидроксиапатита и сульфата кальция. Данные материалы обладают высокой механической прочностью и биологической совместимостью, что и объясняет их создание и использование в медицине. Однако в ответ на имплантацию такого искусственного материала в организме человека также формируется фиброзная капсула вокруг имплантата с минимальной васкуляризацией, что и является недостатком данного способа.

Задачей данного изобретения является создание способа, позволяющего приготавливать биологические трансплантаты с измельчением их до вида наночастиц, в котором они более эффективно усваиваются организмом вследствие увеличения их взаимодействия с тканями реципиента.

Поставленная задача решается тем, что биологические материалы (роговица, твердая мозговая оболочка, склера и т.д.), забранные у донора-трупа в течение 6-24 ч после наступления смерти, а также плацента, полученная в ходе кесарева сечения и родов доношенным плодом, отделенная от пуповины и амниотической оболочки, промытые в стерильном изотоническом растворе натрия хлорида, были высушены методом лиофильной сушки, а затем механически мелко измельчены. Предварительно проводились все необходимые лабораторные исследования для исключения инфекций, учитывались возраст и сопутствующие заболевания, а также причина смерти, установленные во время патологоанатомического вскрытия. В дальнейшем высушенный мелкоизмельченный биологический материал измельчают в измельчительных устройствах до аморфного состояния, представленного порошком из наночастиц, с размерами зерен от 60 до 140 нм, что обеспечивает высокую биоусвояемость материала. Измельчение биоматериала производят в шаровой планетарной мельнице «Pulverezette 7» при температуре не более 60°С и величине подведенной удельной энергии 0,4-100 кДж/г.

Преимущество способа заключается в возможности повышения эффективности консервативного и хирургического лечения заболеваний глаз за счет высокой усвояемости биологических стимуляторов в результате нанометровых частиц материала, из которых они состоят. Наночастицы биологического материала поглощаются иммунокомпетентными клетками, переносятся ими в соединительно-тканые структуры реципиента, что и объясняет их высокую биоусвояемость. Активная миграция иммунокомпетентных клеток, выброс биологически активных веществ (интерлейкинов, цитокинов и др.), выраженный неоангиогенез, наблюдающиеся при взаимодействии с биологическими наноматериалами, объясняют высокий эффект трансплантации.

Предполагается применение полученных данным способом биологических нанотрансплантатов в офтальмологии и трансплантологии в процессе лечения различных заболеваний в виде порошка, взвеси, биологического контейнера.

Пример конкретного применения данного способа в эксперименте на кроликах.

Трансплантация наноплаценты в виде биоконтейнера производилась в эксперименте на 20 кроликах под слизистую оболочку глазного яблока на склеру. Биоконтейнер представлен отрезком сосуда донорской пуповины, заполненным измельченной до аморфного порошка плацентой человека. В результате трансплантации гнойного воспаления не наблюдалось, отмечены выраженные реакции в виде неоваскуляризации в месте имплантации, а также диффузия порошка наноплаценты в соединительно-тканые структуры склеры глаза реципиента. Такое проникновение биологических материалов в соединительно-тканые структуры фиброзной оболочки ранее еще не наблюдалось при использовании различных биологических трансплантатов в виде тканевых структур, а также измельченных в порошок с крупными (более 1 мкм) зернами как по нашим данным, так и литературным источникам (4).

Кроме того, в эксперименте на 10 кроликах проводилось введение суспензии нанопорошка склеры и на 7 кроликах - твердой мозговой оболочки (порошок наночастиц биологического материала, смешанного с физиологическим раствором) в подслизистую оболочку глазного яблока с помощью шприца через иглу. Отмечено активное образование новообразованных сосудов в зоне инъекции, а также утолщение склеры за счет формирования новообразованных коллагеновых волокон, что подтверждает высокую биологическую активность использования биологического материала в виде наночастиц, несмотря на микроинвазивность методики.

Источники, принятые во внимание

1. Красильникова В.Л., Коваленко Ю.Д., Коваленко ТВ и др. Композиционные материалы для пластической офтальмохирургии на основе пенокерамики / В сб. научн., трудов науч. - практ. конференции «Регенеративная медицина и трансплантация тканей в офтальмологии». - М., 16-17 марта, 2005. - С.37-39.

2. Машковкий М.Д. Лекарственные средства. В двух частях. Ч.II. - 12-е изд., перераб. и доп. - М.: Медицина, 1993. - С.177.

Класс A61K35/12 материалы из млекопитающих животных или птиц

способ лечения трофических язв -  патент 2528973 (20.09.2014)
способ восстановления кожного покрова у пациентов с обширными ранами с дефектом мягких тканей (варианты) -  патент 2526814 (27.08.2014)
мазь для лечения ожогов, фолликулита, фурункулеза, васкулита и заживления ран -  патент 2526152 (20.08.2014)
способ комплексного лечения хронического эндометрита у коров -  патент 2524623 (27.07.2014)
способ создания продукта спортивного питания -  патент 2524550 (27.07.2014)
композиции внеклеточного матрикса для лечения рака -  патент 2523339 (20.07.2014)
средство для лечения маститов у коров и способ его применения -  патент 2522247 (10.07.2014)
способ промышленного получения фибрин-мономера из плазмы крови -  патент 2522237 (10.07.2014)
способ коррекции морфофункционального состояния спортсменов -  патент 2521324 (27.06.2014)
способ получения вещества, стимулирующего антигеннезависимую дифференцировку в-лимфоцитов -  патент 2521230 (27.06.2014)

Класс A61K9/14 в виде частиц, например порошки

композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
композиции телмисартана в форме наночастиц и способ их получения -  патент 2526914 (27.08.2014)
пептидные лиганды соматостатиновых рецепторов -  патент 2525468 (20.08.2014)
композиции и способы доставки фармакологических агентов -  патент 2522977 (20.07.2014)
способ коррекции морфофункционального состояния спортсменов -  патент 2521324 (27.06.2014)
усовершенствованное устройство и способ доставки лекарственного аппарата -  патент 2519959 (20.06.2014)
усовершенствование всасывания терапевтических средств через слизистые оболочки или кожу -  патент 2519193 (10.06.2014)
фармацевтическая композиция -  патент 2519090 (10.06.2014)
композиция, на основе гидрофобных агентов и способ ее получения(варианты) -  патент 2518240 (10.06.2014)
способ повышения водорастворимости слаборастворимых веществ -  патент 2517111 (27.05.2014)

Класс A61L27/54 биологически активные материалы, например терапевтические вещества

антимикробные/антибактериальные медицинские устройства, покрытые традиционными средствами китайской медицины -  патент 2524635 (27.07.2014)
биорезорбируемая гидрогелевая полимерная композиция с биологически активными веществами (варианты) -  патент 2519103 (10.06.2014)
способ изготовления биорезорбируемого гибридного сосудистого импланта малого диаметра -  патент 2504406 (20.01.2014)
биоматериалы на основе фосфата кальция -  патент 2501571 (20.12.2013)
искусственная твердая мозговая оболочка и способ ее производства -  патент 2491961 (10.09.2013)
антимикробные полимерные изделия, способы их получения и способы их применения -  патент 2476072 (27.02.2013)
способы получения антибактериальных контактных линз -  патент 2471505 (10.01.2013)
способ обработки текстильных изделий для сердечно-сосудистой хирургии -  патент 2470671 (27.12.2012)
n-замещенные мономеры и полимеры -  патент 2470040 (20.12.2012)
антибактериальные контактные линзы с пониженной мутностью и их изготовление -  патент 2467768 (27.11.2012)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх