спектрометр-дозиметр

Классы МПК:G01T1/24 с помощью полупроводниковых детекторов
G01T1/16 измерение интенсивности излучения
G01T1/02 дозиметры
Автор(ы):,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (RU)
Приоритеты:
подача заявки:
2008-03-11
публикация патента:

Изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности. Техническим результатом являются расширенные функциональные возможности устройства при сохранении полной автоматизации измерений. Сущность предлагаемого изобретения состоит в создании устройства для одновременного автоматического измерения и анализа потоков, спектров, доз альфа-, бета-, гамма-излучения веществ, а также типов и концентраций галоидсодержащих газов в атмосфере за счет организации параллельной работы двух блоков детекторов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей. 1 ил. спектрометр-дозиметр, патент № 2366977

спектрометр-дозиметр, патент № 2366977

Формула изобретения

Спектрометр-дозиметр, содержащий блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, оперативное запоминающее устройство, блок интерфейса, блок управления и однокристальную электронно-вычислительную машину, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход, отличающийся тем, что в устройство введены второй блок детекторов, состоящий из трех газовых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, транслятор протоколов, приемопередатчик инфракрасного излучения и карманный персональный компьютер со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора протоколов, а вторые вход и выход этого транслятора соединены с внешними входом и выходом блока интерфейса, причем' первый, второй и третий выходы второго блока детекторов соединены с первыми входами соответственно четвертого, пятого и шестого блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого, пятого и шестого аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей и вторые выходы четвертого, пятого и шестого блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого, пятого и шестого аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы четвертого, пятого и шестого блоков аналоговых измерений связаны со второй шиной управления.

Описание изобретения к патенту

Предлагаемое изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности.

Известно многофункциональное устройство для детектирования утечки газов [пат. Россия № 2280862, МПК8 G01N 27/68]. Оно содержит корпус с расположенным внутри него катодом, анодом и входным отверстием для детектируемого газа, средства для измерения тока разряда и высоковольтный источник питания, создающий напряжение, необходимое для поддержания коронного разряда между анодом и катодом, а катод выполнен из n игл, где nспектрометр-дозиметр, патент № 2366977 2, установленных симметрично относительно корпуса, на которые подано напряжение от высоковольтного источника питания, превышающее напряжение зажигания коронного разряда в детектируемом газе на острие n игл, при этом иглы катода выполнены с дополнительными внутренними каналами для подачи газа, соединенными с дополнительным устройством принудительной прокачки детектора газом.

Кроме детектирования наличия галоидсодержащего газа в атмосфере газовый детектор может использоваться в приборах для оценки типа этого газа и для измерение его концентрации.

Недостатки аналога заключаются в том, что отсутствуют измерение радиоактивности и автоматизация измерений.

Из числа аналогов наиболее близким по технической сущности к предлагаемому является устройство [пат. Россия № 2029316, МПК8 G01T 1/24, G01T 1/16, G01T 1/02], которое и выбрано по качестве прототипа. Прототип, в отличие от аналога, выполняет измерение радиоактивности, и эти измерения полностью автоматизированы.

Технический результат в прототипе достигается определением радиоактивности при помощи трех расположенных друг под другом полупроводниковых детекторов альфа-, бета- и гамма-излучения разной толщины и из определенного материала, в том числе применением специального (третьего) детектора гамма-излучения толщиной несколько миллиметров, что позволяет существенно расширить динамический диапазон регистрируемых энергий гамма-излучения более точным определением суммарной дозы и полностью автоматизировать измерения.

Прототип содержит блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя (АЦП), оперативное запоминающее устройство (ОЗУ), блок интерфейса, блок управления и однокристальную электронно-вычислительную машину (ЭВМ), связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход. Кроме того, прототип содержит индикатор и блок клавиатуры, первый выход которого подсоединен к общей шине, а вход и второй выход - ко второй шине управления, причем входы индикатора соединены соответственно первый - с общей шиной, а второй - со второй шиной управления.

Прототип работает следующим образом.

При регистрации альфа-, бета- или гамма-излучения электрический импульс с соответствующего полупроводникового детектора поступает на блок, в котором происходит усиление и формирование сигнала для последующего преобразования в АЦП, а также формирование запускающего и идентифицирующего импульса для блока управления. Код амплитуды после преобразования фиксируется во внутреннем регистре АЦП и в соответствующем программном цикле записывается в ОЗУ. Идентификационный код детектора, в котором зарегистрировано излучение, формируется блоком управления и считывается ЭВМ одновременно с кодом амплитуды. Преобразования в трех каналах происходят независимо с разбиением регистрируемого диапазона энергий на 63 уровня, что позволяет производить анализ регистрируемых альфа-, бета- и гамма-излучений по их спектральному, энергетическому и изотопному составу, используя при этом программно-реализованные метод спектрометр-дозиметр, патент № 2366977 Е-Е, логику совпадений - антисовпадений, а также определять дозу как суммарную, так и по каждому виду излучений.

Работой спектрометра-дозиметра управляет ЭВМ в соответствии с заданным режимом. Режим задается оператором в интерактивном режиме при помощи блока клавиатуры и интерфейсного блока. Управляющие сигналы от ЭВМ к периферийным устройствам передаются по шине управления. Быстродействие системы достигается за счет программно-аппаратной реализации цикла записи данных, выставляемых АЦП в ОЗУ. Аппаратную поддержку цикла записи осуществляет блок управления, используя для этого первую и вторую шины управления. Интерфейсный блок обеспечивает побайтный параллельный или последовательный обмен между спектрометром-дозиметром и ЭВМ любого типа, а также запись и чтение с кассетного магнитофона любого типа.

В соответствии с заданной программой измерений ЭВМ осуществляет управление работой спектрометра-дозиметра и производит накопление информации в ОЗУ. По завершении накопления и обработки данные отображаются на индикаторе или записываются на магнитофон, либо считываются ЭВМ для более детального анализа. Применение ЭВМ с набором подпрограмм, хранящимся в резидентном постоянном запоминающем устройстве, позволяет оперативно управлять прибором, изменять алгоритм обработки данных, а также использовать спектрометр-идентификатор-дозиметр совместно с ЭВМ любого типа.

Недостатком прототипа является функциональная ограниченность, связанная с невозможностью детектирования газов и отсутствием автоматического анализа результатов измерений с их оперативной передачей.

Задачей, на решение которой направленно заявляемое изобретение, является расширение функциональных возможностей за счет параллельного детектирования газов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей.

Техническим результатом являются расширенные функциональные возможности устройства при сохранении полной автоматизации измерений.

Поставленная задача решается тем, что в спектрометр-дозиметр, содержащий блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, оперативное запоминающее устройство, блок интерфейса, блок управления и однокристальную электронно-вычислительную машину, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход, введены второй блок детекторов, состоящий из трех газовых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, транслятор протоколов, приемопередатчик инфракрасного излучения и карманный персональный компьютер со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора протоколов, а вторые вход и выход этого транслятора соединены с внешними входом и выходом блока интерфейса, причем первый, второй и третий выходы второго блока детекторов соединены с первыми входами соответственно четвертого, пятого и шестого блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого, пятого и шестого аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей и вторые выходы четвертого, пятого и шестого блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого, пятого и шестого аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы четвертого, пятого и шестого блоков аналоговых измерений связаны со второй шиной управления.

Сущность предлагаемого изобретения состоит в создании устройства для одновременного автоматического измерения и анализа потоков, спектров, доз альфа-, бета-, гамма-излучения веществ, а также типов и концентраций галоидсодержащих газов в атмосфере за счет организации параллельной работы двух блоков детекторов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей.

Сущность предлагаемого изобретения поясняется чертежом, где изображена функциональная схема предлагаемого устройства.

Спектрометр-дозиметр, содержащий блок 1 детекторов, состоящий из трех полупроводниковых детекторов, три блока 2, 3, 4 аналоговых измерений, три аналого-цифровых преобразователя 5, 6, 7, оперативное запоминающее устройство 8, блок 9 интерфейса, блок управления 10 и однокристальную электронно-вычислительную машину 11, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства 8 и блока интерфейса 9, а первый, второй и третий выходы блока 1 детекторов соединены с первыми входами соответственно первого 2, второго 3 и третьего 4 блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого 5, второго 6 и третьего 7 аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей 5, 6, 7, первые вход и выход блока 10 управления и вторые выходы трех блоков 2, 3, 4 аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей 5, 6, 7 и блока управления 10 подсоединены к общей шине однокристальной электронно-вычислительной машины 11, а вторые входы трех блоков 2, 3, 4 аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления 10, вторые вход и выход однокристальной электронно-вычислительной машины 11, второй вход оперативного запоминающего устройства 8 и вторые вход и выход блока интерфейса 9, имеющего также внешние вход и выход. Кроме того, в устройство введены второй блок 12 детекторов, состоящий из трех газовых детекторов, три блока 13, 14, 15 аналоговых измерений, три аналого-цифровых преобразователя 16, 17, 18, транслятор 19 протоколов, приемопередатчик 20 инфракрасного излучения и карманный персональный компьютер 21 со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком 20 инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора 19 протоколов, а вторые вход и выход этого транслятора 19 соединены с внешними входом и выходом блока 9 интерфейса, причем первый, второй и третий выходы второго блока 12 детекторов соединены с первыми входами соответственно четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого 16, пятого 17 и шестого 18 аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей 16, 17, 18 и вторые выходы четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого 16, пятого 17 и шестого 18 аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины 11, а вторые входы четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений связаны со второй шиной управления.

Устройство работает следующим образом.

Пусть в начальный момент времени оператором в интерактивном режиме при помощи карманного персонального компьютера 21 со встроенным мобильным сотовым телефоном задается режим работы спектрометра-дозиметра. По беспроводному каналу связи информация о режиме работы принимается приемопередатчиком 20 инфракрасного излучения и передается в транслятор 19 протоколов, в результате чего через общую шину задается режим работы однокристальной электронно-вычислительной машины 11, которая управляет работой спектрометра-дозиметра. Управляющие сигналы от электронно-вычислительной машины 11 к периферийным устройствам передаются по второй шине управления.

При регистрации альфа-, бета- или гамма-излучения электрический импульс с соответствующего полупроводникового детектора блока 1 поступает на соответствующий блок 2, 3 или 4 аналоговых измерений, а при регистрации галоидсодержащего газа электический сигнал с соответствующего полупроводникового детектора блока 12 поступает на соответствующий блок 13, 14 или 15 аналоговых измерений. В блоках аналоговый измерений 2, 3, 4, 13, 14, 15 происходит усиление и формирование сигналов для последующего преобразования в соответствующих аналого-цифровых преобразователях 5, 6, 7, 16, 17, 18, а также формирование запускающих и идентифицирующих импульсов для блока управления 10.

Код амплитуды после преобразования фиксируется во внутренних регистрах аналого-цифровых преобразователей 5, 6, 7, 16, 17, 18 и в соответствующем программном цикле записывается в оперативное запоминающее устройство 8. Идентификационный код детектора, в котором зарегистрирован сигнал, формируется блоком управления 10 и считывается однокристальной электронно-вычислительной машиной 11 одновременно с кодом амплитуды.

Быстродействие системы достигается за счет программно-аппаратной реализации цикла записи данных, выставляемых аналого-цифровыми преобразователями 5, 6, 7, 16, 17, 18 в оперативное запоминающее устройство 8. Аппаратную поддержку цикла записи осуществляет блок управления 10, используя для этого первую и вторую шины управления. Интерфейсный блок 9 обеспечивает побайтный параллельный или последовательный обмен информацией через транслятор 19 и приемопередатчик 20 с карманным персональным компьютером 21, встроенный мобильный сотовый телефон которого дает возможность записи и чтения информации с различных источников.

В соответствии с заданной компьютером 21 программой измерений электронно-вычислительная машина 11 осуществляет управление работой спектрометра-дозиметра и производит накопление информации в оперативном запоминающем устройстве 8. По завершении накопления и обработки данные пересылаются через блок 9 интерфейса, транслятор 19 и приемопередатчик 20 в компьютер 21, где они анализируются и отображаются на экране, а также могут быть переданы для дальнейшего более детального анализа. Применение электронно-вычислительной машины 11 с набором подпрограмм, хранящимся в карманном персональном компьютере 21 со встроенным мобильным сотовым телефоном, обеспечивающим доступ к различным источникам информации, позволяет оперативно управлять прибором, изменять алгоритм обработки данных, а также использовать спектрометр-идентификатор-дозиметр в различных информационно-измерительных системах.

В основу работы устройства положен принцип поочередной перекрестной обработки входной информации и синхронной параллельной обработки выходной информации, благодаря чему функции автоматизации измерений реализуются одним, а функции анализа результатов - другим вычислительным средством, имеющим эффективную связь с внешними системами.

Преобразования во всех шести каналах происходят независимо. В первых трех каналах выполняется разбиение регистрируемого диапазона энергий на 63 уровня, что позволяет производить анализ регистрируемых альфа-, бета- и гамма-излучений по их спектральному, энергетическому и изотопному составу, используя при этом программно-реализованные метод спектрометр-дозиметр, патент № 2366977 Е-Е, логику совпадений-антисовпадений, а также определять дозу как суммарную, так и по каждому виду излучений. В других трех каналах выполняются режимы детектирования наличия, оценки типа и измерения изменений концентрации галоидсодержащего газа в атмосфере, используя при этом программно-реализованные алгоритмы управления и анализа при восходящем и неизменном напряжении. Все результаты анализа могут быть представлены в карманном персональном компьютере в нужном виде и переданы с помощью встроенного мобильного сотового телефона в нужное место.

Таким образом, предложенное устройство обладает расширенными функциональными возможностями при сохранении полной автоматизации измерений.

Класс G01T1/24 с помощью полупроводниковых детекторов

полупроводниковый детектор для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом -  патент 2529054 (27.09.2014)
устройство для измерения мощности дозы гамма-излучения ядерной энергетической установки в условиях фоновой помехи от высокоэнергетичных космических электронов и протонов -  патент 2527664 (10.09.2014)
способ сортировки алмазов по электрофизическим свойствам -  патент 2526216 (20.08.2014)
детектор рентгеновского излучения с широким динамическим диапазоном и улучшенным отношением сигнал - шум -  патент 2509321 (10.03.2014)
моп диодная ячейка монолитного детектора излучений -  патент 2494497 (27.09.2013)
многоканальный полупроводниковый детектор для регистрации альфа-частиц в нейтронном генераторе со статическим вакуумом и чувствительный элемент для него -  патент 2476907 (27.02.2013)
детектор и способ детектирования электромагнитного излучения -  патент 2437119 (20.12.2011)
реконструкция энергетического спектра -  патент 2427858 (27.08.2011)
комбинированный полупроводниковый детектор рентгеновского излучения -  патент 2413244 (27.02.2011)
способ получения gd2o2s:pr с очень кратковременным послесвечением для компьютерной томографии -  патент 2410407 (27.01.2011)

Класс G01T1/16 измерение интенсивности излучения

мобильный обнаружитель опасных скрытых веществ (варианты) -  патент 2524754 (10.08.2014)
способ и устройство для обнаружения алмазов в кимберлите -  патент 2521723 (10.07.2014)
способ определения параметров ионизирующего воздействия на исследуемый образец импульсного высокоинтенсивного излучения -  патент 2507541 (20.02.2014)
способ регистрации коронального выброса массы -  патент 2506608 (10.02.2014)
способ радиационно-гигиенического контроля качества угля -  патент 2498348 (10.11.2013)
передающая среда для детекторов излучения, расположенная в изометрической плоскости -  патент 2496125 (20.10.2013)
статистическая томографическая реконструкция на основе измерений заряженных частиц -  патент 2468390 (27.11.2012)
способ контроля делящихся материалов -  патент 2435173 (27.11.2011)
способ измерения плотности потока радона с поверхности грунта по бета- и гамма-излучению -  патент 2428715 (10.09.2011)
малогабаритное устройство для визуализации источников гамма-излучения -  патент 2426151 (10.08.2011)

Класс G01T1/02 дозиметры

устройство для измерения мощности дозы гамма-излучения ядерной энергетической установки в условиях фоновой помехи от высокоэнергетичных космических электронов и протонов -  патент 2527664 (10.09.2014)
устройство для управления заслонкой, перекрывающей пучок ионизирующего излучения, исходящего из коллиматора градуированной и поверочной дозиметрической установки -  патент 2495454 (10.10.2013)
дозиметр-радиометр на основе биологических структур -  патент 2485546 (20.06.2013)
индикация для осведомления о дозе персонала -  патент 2469351 (10.12.2012)
устройство для измерения дозы ионизирующих излучений -  патент 2451604 (27.05.2012)
устройство и установка для измерения и отображения излучения -  патент 2413243 (27.02.2011)
устройство для определения дозы ионизирующего излучения -  патент 2386145 (10.04.2010)
способ измерения мощности дозы гамма-излучения и устройство для его осуществления -  патент 2361240 (10.07.2009)
способ обнаружения ионизирующего излучения, детектор и использование полевого моп-транзистора в нем -  патент 2138065 (20.09.1999)
способ идентификации рентгенографических рефлексов на полусферической поверхности -  патент 2131134 (27.05.1999)
Наверх