способ получения оксида алюминия, пригодного для производства монокристаллов корунда

Классы МПК:C01F7/42 получение оксида или гидроксида алюминия из металлического алюминия, например окислением 
Автор(ы):, , ,
Патентообладатель(и):Лысенко Андрей Павлович (RU),
Бекишев Владимир Афанасьевич (RU),
Серёдкин Юрий Георгиевич (RU)
Приоритеты:
подача заявки:
2008-05-08
публикация патента:

Изобретение относится к области химии и может быть использовано в технологии получения оксида алюминия, который может быть использован в производстве искусственных кристаллов корунда. Способ получения оксида алюминия включает анодное растворение алюминия с помощью выпрямленного по двухполупериодной схеме переменного тока при плотности тока в пределах 0,015÷0,045 А/см 2 в водном растворе хлорида натрия с концентрацией 30÷300 г/л. Полученный гидроксид алюминия отделяют и прокаливают при температуре 600÷1350°С. Осадок гидроксида алюминия отмывают, фильтруют и подают на прокаливание. Изобретение позволяет повысить выход продукта. 1 з.п. ф-лы, 1 табл.

Формула изобретения

1. Электрохимический способ получения оксида алюминия, включающий анодное растворение алюминия в водном растворе хлорида натрия, отделение гидроксида алюминия и прокаливание, отличающийся тем, что анодное растворение алюминия осуществляют в водном растворе хлорида натрия концентрацией 30÷300 г/л с помощью выпрямленного по двухполупериодной схеме переменного тока при плотности тока в пределах 0,015÷0,045 А/см2, а прокаливание гидроксида алюминия проводят при температуре 600÷1350°С.

2. Способ по п.1, отличающийся тем, что осадок гидроксида алюминия отмывают, фильтруют и подают на прокаливание.

Описание изобретения к патенту

Изобретение относится к области химии, в частности к технологии получения оксида алюминия, который может быть использован в производстве искусственных кристаллов корунда.

Известен способ промышленного получения оксида алюминия - способ Байера, который заключается в гидрохимической переработке бокситов с получением гидроксида алюминия, последующей сушке и прокалке [Лайнер А.И. и др. Производство глинозема, 2-е изд., изд. "Металлургия", М., 1978 г., с.61-64]. Однако получаемый по данному способу оксид алюминия не удовлетворяет требованиям по высокой чистоте и однородности по структуре продукта.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является электрохимический способ получения оксида алюминия, включающий анодное растворение алюминия в электролите, отделение гидроксида алюминия и прокаливание [а.с. СССР 621644, кл. C01F 7/42, опубл. 30.08.1978 г., Бюл. № 32]. Анодное растворение металлического алюминия осуществляют в водном 0,2÷0,3 М растворе хлорида натрия или хлорида аммония с добавлением 0,1÷1 вес.% гексаметилентетрамина, при плотности тока 10÷15 А/дм2, температуре 60÷80°С. При данных параметрах проведения процесса выход гидроксида алюминия в пересчете на оксид алюминия составляет 4÷6 г/ч. Для избежания пассивации электродов периодически переключают полюса. Выход продукта в пересчете на оксид алюминия очень низкий. Из-за необходимости периодически переключать полярность способ отличается известной трудоемкостью.

Целью предлагаемого изобретения является получение оксида алюминия, пригодного для производства монокристаллов корунда, увеличение электрохимического выхода и удельной производительности, а также снижение трудоемкости процесса.

Достигается это тем, что анодное растворение алюминия осуществляют в водном растворе хлорида натрия концентрацией 30÷300 г/л с помощью выпрямленного по двухполупериодной схеме переменного тока при плотности тока 0,015÷0,045 А/см 2. Последующая обработка осадка гидроксида алюминия зависит от используемого метода выращивания монокристаллов корунда и может включать в различных сочетаниях отмывку, фильтрование, сушку, прессование и прокаливание при температуре 600÷1350°С.

Интервал концентраций хлорида натрия 30÷300 г/л обусловлен тем, что при концентрации ниже 30 г/л нарушается тепловой баланс электролизера, возникает необходимость усложнения его конструкции для обеспечения эффективного охлаждения, снижается удельная производительность; повышение концентрации выше 300 г/л нецелесообразно, поскольку приводит к пересыщению раствора и выпадению осадка хлорида натрия.

Интервал плотностей тока 0,015÷0,045 А/см2 обусловлен тем, что при плотности тока ниже 0,015 А/см2 скорость процесса низкая; при плотности тока выше 0,045 А/см2 происходит снижение электрохимического выхода продукта.

Температурный интервал прокаливания 600÷1350°С обусловлен тем, что в зависимости от используемого метода выращивания монокристаллов корунда требуется определенный фазовый состав оксида алюминия. При температуре ниже 600°С образуются нестабильные фазы оксида алюминия и гидроксиды алюминия. Дальнейшее повышение температуры выше 1350°С вызывает расход энергии, а изменения фазового состава не происходит.

Пример 1. В электролизер заливают электролит - водный раствор хлорида натрия концентрацией 30 г/л. Туда же помещают алюминиевые электроды. Через ячейку пропускают выпрямленный по двухполупериодной схеме переменный ток, силу тока поддерживают постоянной, соответствующей плотности тока 0,015 А/см2. В процессе электролиза уровень электролита поддерживают постоянным. По окончании процесса полученный осадок гидроксида алюминия отмывают, фильтруют и прокаливают в течение 2-х часов при температуре 600°С. Электрохимический выход гидроксида алюминия в пересчете на оксид алюминия составляет 1,03 г/А·ч (при напряжении 2,95 В удельная производительность составляет 349 г/кВт·ч).

Пример 2. Процесс проводят аналогично примеру 1 при следующих параметрах: концентрация хлорида натрия - 100 г/л, плотность тока - 0,030 А/см2 , температура прокаливания - 800°С. Электрохимический выход гидроксида алюминия в пересчете на оксид алюминия составляет 1,02 г/А·ч (при напряжении 2,54 В удельная производительность составляет 402 г/кВт·ч).

Пример 3. Процесс проводят аналогично примеру 1 при следующих параметрах: концентрация хлорида натрия - 300 г/л, плотность тока - 0,045 А/см2 , температура прокаливания - 1350°С. Электрохимический выход гидроксида алюминия в пересчете на оксид алюминия составляет 1,00 г/А·ч (при напряжении 2,31 В удельная производительность составляет 433 г/кВт·ч).

Пример 4. Процесс проводят аналогично примеру 1 при следующих параметрах: концентрация хлорида натрия - 10 г/л, плотность тока - 0,011 А/см2 , температура прокаливания - 500°С. Электрохимический выход гидроксида алюминия в пересчете на оксид алюминия составляет 0,89 г/А·ч (при напряжении 4,51 В удельная производительность составляет 197 г/кВт·ч).

Пример 5. Процесс проводят аналогично примеру 1 при следующих параметрах: концентрация хлорида натрия - 300 г/л, плотность тока - 0,085 А/см2 , температура прокаливания - 1400°С. Электрохимический выход гидроксида алюминия в пересчете на оксид алюминия составляет 0,69 г/А·ч (при напряжении 3,02 В удельная производительность составляет 228 г/кВт·ч).

Предлагаемый способ характеризуется высокой производительностью, малой трудоемкостью, экологической безопасностью, а также возможностью получать оксид алюминия, пригодный для различных методов выращивания монокристаллов корунда.

Результаты экспериментальных исследований параметров получения оксида алюминия приведены в таблице 1.

Таблица 1
СпособКонцентрация NaCl, г/лПлотность тока,

А/см2
Температура прокаливания, °C Электрохимический выход продукта, г/А·ч Удельная производительность,

г/кВт·ч
Пример 1 300,015 6001,03 349
Пример 2100 0,030800 1,02402
Пример 3 3000,045 13501,00 433
Пример 410 0,011500 0,89197
Пример 5 3000,085 14000,69 228
Прототип 12÷18 0,100÷0,150 910÷9500,60÷0,67 75÷83

Класс C01F7/42 получение оксида или гидроксида алюминия из металлического алюминия, например окислением 

способ получения корунда высокой чистоты -  патент 2519450 (10.06.2014)
способ активации порошка алюминия -  патент 2509790 (20.03.2014)
корундовая нанопленка и способ ее получения (варианты) -  патент 2494966 (10.10.2013)
способ получения наноразмерного порошка гамма-оксида алюминия -  патент 2493102 (20.09.2013)
способ получения оксида алюминия, пригодного для производства искусственных кристаллов корунда -  патент 2466937 (20.11.2012)
трубчатое или комбинированное корундовое нановолокно и способ его получения -  патент 2458861 (20.08.2012)
способ получения конструкционной алюмооксидной керамики -  патент 2453517 (20.06.2012)
способ получения водорода с помощью плазменного генератора -  патент 2440925 (27.01.2012)
электрохимический способ получения гидроксида алюминия -  патент 2412905 (27.02.2011)
электрохимический способ получения оксида алюминия -  патент 2412904 (27.02.2011)
Наверх