способ получения биопокрытия на имплантатах из титана и его сплавов

Классы МПК:A61L27/06 титан или его сплавы
A61K6/04 металлы или сплавы
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (СГТУ) (RU)
Приоритеты:
подача заявки:
2008-04-09
публикация патента:

Изобретение относится к медицинской технике, а именно к получению биосовместимого покрытия на имплантатах из титана и его сплавов, и может использоваться в стоматологии, травматологии, ортопедии. В способе биосовместимое покрытие на имплантатах формируется электрохимическим оксидированием, совмещенным с электрохимическим обезжириванием, в электролите концентрацией 200 г/л H2 SO4, 5 г/л сульфонола и 15 г/л Na2SiO 3 в дистиллированной воде при анодной плотности тока 1,8-2,4 А/дм2, напряжении 25-100 В, температуре 40-60°С и продолжительности 10-12 мин. Способ позволяет упростить получение биосовместимого покрытия на имплантатах из титана и его сплавов, исключая, как отдельную операцию, очистку их поверхности перед формированием покрытия.

Формула изобретения

Способ получения биопокрытия на имплантатах из титана и его сплавов, включающий очистку поверхности имплантатов и формирование покрытия, отличающийся тем, что очистку поверхности электрохимическим обезжириванием и формирование покрытия электрохимическим оксидированием осуществляют в электролите, содержащем 200 г/л H2SO 4, 5 г/л сульфонола и 15 г/л Na2SiO3 в дистиллированной воде.

Описание изобретения к патенту

Изобретение относится к медицинской технике и может использоваться при получении биопокрытий на имплантатах из титана и его сплавов для стоматологии, травматологии, ортопедии.

Создание биосовместимых электрохимических покрытий на имплантатах требует предварительной подготовки их поверхности путем очистки от жировых загрязняющих пленок, ухудшающих контактирование электролита с обрабатываемым металлом и способствующих развитию патогенной микрофлоры в зоне имплантации. Указанные явления часто приводят к снижению качества покрытия, возникновению воспалительных процессов в окружающих имплантат тканях с ухудшением остеоинтеграции и отторжением имплантата. Очистка металлической поверхности от жировых пленок применяется как самостоятельный метод подготовки изделий перед нанесением покрытий, включающий способы щелочного, химического и электрохимического обезжиривания в специальных моющих электролитах [1]. Проведение отдельной очистки поверхности с последующим отдельным нанесением на нее покрытия требует использования разных технических устройств и электролитов, что сопровождается высокими трудоемкостью, энергоемкостью, низкой экономической эффективностью производства, а также сложностью технологии нанесения покрытия. Объединение процессов очистки и оксидирования имплантатов в одну технологическую операцию может значительно упростить формирование покрытия. Для этого необходимо использовать электролиты, обеспечивающие совмещенное электрохимическое действие - очистку и оксидирование. Составы известных моющих электролитов, предназначенных для очистки металлических поверхностей, не могут обеспечить получение покрытий на имплантатах и не позволяют осуществлять их совмещенную очистку обезжириванием и электрохимическое оксидирование. Составы существующих электролитов оксидирования, в свою очередь, не могут обеспечить обезжиривание поверхности имплантатов [2-4]. Авторам известно только последовательное использование каждой из указанных операций.

Ближайшим аналогом, по мнению авторов, является способ формирования биоактивного покрытия на имплантат, включающий предварительную очистку поверхности имплантата и, как отдельную операцию, нанесение покрытия методом электрохимического оксидирования имплантата в растворах биоактивных веществ [5]. Недостатком способа является отсутствие в составе электролита оксидирования компонентов для обезжиривания. Поэтому данный способ не позволяет осуществлять совмещенный процесс оксидирования и обезжиривания имплантатов.

Задачей изобретения является упрощение получения оксидного биопокрытия на имплантатах из титана и его сплавов за счет совмещения электрохимических процессов очистки обезжириванием и оксидирования имплантатов в одной технологической операции.

Поставленная задача достигается путем использования электролита, содержащего 200 г/л H2SO4, 5 г/л сульфонола и 15 г/л Na2SiO3. Указанный электролит включает растворы окисляющих и обезжиривающих компонентов в дистиллированной воде и позволяет формировать покрытия на имплантатах без отдельно проводимой очистки их поверхности.

Сущность изобретения заключается в том, что в электролите для электрохимического обезжиривания и оксидирования, содержащем 200 г/л Н2SO4 , 5 г/л сульфонола и 15 г/л Na2SiO3 в дистиллированной воде, проводят обработку имплантата без предварительной очистки его поверхности. Через электролит с температурой 40-60°С пропускают постоянный электрический ток анодной плотностью 1,8-2,4 А/дм2, напряжением 25-100 В и проводят обработку в течение 10-12 мин. При этом происходит уменьшение поверхностного натяжения жирового слоя и адсорбционное вытеснение его частиц с поверхности имплантата за счет присутствия в электролите компонентов для обезжиривания. На участках поверхности без частиц жира образуются оксиды титана при взаимодействии электролита с металлом, которые по мере своего роста вытесняют крупные фрагменты жировой загрязняющей пленки с обрабатываемой поверхности. В результате происходит очистка обезжириванием, совмещенная с анодированием имплантата, создается титанооксидное покрытие, обладающее высокой биосовместимостью и механической прочностью.

Пример. Предлагаемый способ осуществляется следующим образом: берут имплантат из титана и его сплавов с шероховатой поверхностью и помещают его в электролизер с электролитом концентрацией 200 г/л H2SO4 , 5 г/л сульфонола и 15 г/л Nа2SiO3 в дистиллированной воде. Имплантат подсоединяется в качестве анода, противоэлектродом служит титановый катод. Электролит нагревается до температуры 50°С, затем через него пропускается постоянный электрический ток анодной плотностью 1,8 А/дм2 и напряжением 50 В. Процесс совмещенного обезжиривания и оксидирования проводится в течение 10 мин. В результате получается оксидное покрытие с высоким уровнем показателей биосовместимости, а именно суммарной открытой пористостью 30-35%, размером открытых пор 15-20 мкм, толщиной 20-30 мкм, адгезией 25-27 МПа, способствующими эффективной адаптации покрытия к окружающей костной ткани и прочному закреплению оксидированного имплантата в организме. Значения данных показателей биопокрытия аналогичны значениям показателей покрытия, полученного путем проведения отдельных электрохимических операций обезжиривания и оксидирования.

Качество очистки поверхности при совмещенном обезжиривании и оксидировании имплантата определялось с помощью лазерного микроспектрального анализа путем выявления содержания на обработанной поверхности уровня углерода. При совмещенном электрохимическом обезжиривании и оксидировании имплантата из титана ВТ1-0 получается биопокрытие с уровнем содержания углерода 0,1%, что всего на 0,03% превышает уровень естественного содержания углерода в титане, составляющий 0,07%. В биопокрытии на титане ВТ1-00 наличие углерода соответствует уровню 0,09% при естественном содержании примесного углерода 0,05%. Указанное содержание углерода свидетельствует об эффективности электрохимического обезжиривания титанового имплантата, совмещенного с его электрохимическим оксидированием, и полноте удаления жировой загрязняющей пленки с обрабатываемой поверхности.

Положительный эффект (снижение трудоемкости формирования покрытия, технологическая простота) достигается за счет объединения в одной технологической операции двух электрохимических процессов - очистки поверхности имплантата обезжириванием и получения покрытия на нем оксидированием, что дает возможность использовать в техпроцессе один и тот же электролизер и один и тот же электролит, исключить такие вспомогательные операции как промывку имплантатов, а также вторичные загрузку и выгрузку имплантатов из электролизера, в результате чего происходит экономия производственного времени, электролита и электроэнергии, не требуется дополнительное оборудование для техпроцесса. Все это позволяет значительно упростить процесс получения оксидного биопокрытия на имплантатах, существенно уменьшить его трудоемкость и повысить экономичность.

Источники информации

1. Грилихес С.Я. Обезжиривание, травление и полирование металлов. - Л.: Машиностроение, 1983, 102 с.

2. Патент РФ № 2159094, 2000. Способ нанесения покрытия на имплантат из титана и его сплавов.

3. Патент РФ № 2154463, 2000. Покрытие на имплантат из титана и его сплавов и способ его нанесения.

4. Патент РФ № 2192892, 2002. Способ создания биосовместимой поверхности на имплантатах из титана и его сплавов.

5. Патент РФ № 2194536, 2002. Способ формирования биоактивного покрытия на имплантат.

Класс A61L27/06 титан или его сплавы

многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом -  патент 2524654 (27.07.2014)
способ получения наноструктурированного кальций-фосфатного покрытия для медицинских имплантатов -  патент 2523410 (20.07.2014)
устройство зонтичное (окклюдер) с модифицированным поверхностным слоем -  патент 2522932 (20.07.2014)
способ изготовления внутрикостных имплантатов с антимикробным эффектом -  патент 2512714 (10.04.2014)
способ изготовления кардиоимплантата из сплава на основе никелида титана с модифицированным ионно-плазменной обработкой поверхностным слоем -  патент 2508130 (27.02.2014)
покрытие на имплант из титана и его сплавов и способ его приготовления -  патент 2502526 (27.12.2013)
способ модифицирования титановой поверхности -  патент 2495678 (20.10.2013)
способ изготовления внутрикостного стоматологического имплантата с углеродным нанопокрытием -  патент 2490032 (20.08.2013)
медицинские изделия и способ их получения -  патент 2485979 (27.06.2013)
способ создания наноструктурной биоинертной пористой поверхности на титановых имплантатах -  патент 2469744 (20.12.2012)

Класс A61K6/04 металлы или сплавы

способ получения оксидного биосовместимого покрытия на чрекостных имплантатах из нержавеющей стали -  патент 2519095 (10.06.2014)
сплав на основе кобальта для зубных протезов с повышенными механическими характеристиками -  патент 2517057 (27.05.2014)
способ получения металлокерамических покрытий на поверхности зубных протезов -  патент 2493813 (27.09.2013)
сплав на основе палладия для изготовления зубных протезов -  патент 2481095 (10.05.2013)
сплав на основе золота для изготовления зубных протезов -  патент 2478129 (27.03.2013)
остеоинтеграционное покрытие на ортопедические и стоматологические титановые имплантаты -  патент 2472532 (20.01.2013)
пригодный для обжига легкоплавкий никель-хромовый сплав для получения облицованной керамикой реставрации зубов -  патент 2469698 (20.12.2012)
способ нанесения гальванического покрытия на съемные зубные протезы -  патент 2469697 (20.12.2012)
оксидное покрытие на чрескостные ортопедические имплантаты из нержавеющей стали -  патент 2465015 (27.10.2012)
состав для пломбирования зубов -  патент 2463034 (10.10.2012)
Наверх