способ получения электротехнической анизотропной стали с термостойким электроизоляционным покрытием

Классы МПК:C21D8/12 при изготовлении изделий с особыми электромагнитными свойствами
Автор(ы):,
Патентообладатель(и):Открытое акционерное общество "Новолипецкий металлургический комбинат" (ОАО "НЛМК") (RU)
Приоритеты:
подача заявки:
2007-06-19
публикация патента:

Изобретение относится к области черной металлургии и может использоваться при производстве полосы из электротехнической анизотропной стали. Для улучшения магнитных характеристик полосы за счет снижения удельных магнитных потерь в стали способ включает нанесение на полосу водной суспензии гидроокиси магния с последующей сушкой, высокотемпературный отжиг, нанесение электроизоляционного покрытия с последующей сушкой, выпрямляющий отжиг, состоящий из нагрева, выдержки и охлаждения в интервале температур (800-850)°С - (50-200)°С со скоростью 5-15°С/с. 1 табл.

Формула изобретения

Способ получения полосы из анизотропной электротехнической стали с термостойким электроизоляционным покрытием, включающий нанесение на полосу водной суспензии гидроокиси магния с последующей сушкой, высокотемпературный отжиг, нанесение электроизоляционного покрытия с последующей сушкой и выпрямляющий отжиг полосы, отличающийся тем, что в процессе выпрямляющего отжига, включающем нагрев, выдержку и охлаждение, после цикла выдержки проводят регулируемое охлаждение в интервале температур (800-850)°С - (50-200)°С со скоростью 5-15°С/с.

Описание изобретения к патенту

Изобретение относится к области черной металлургии и может использоваться при производстве электротехнической анизотропной стали.

Наиболее близким по технической сущности и принятым за прототип к предложенному изобретению является способ получения термостойкого электроизоляционного покрытия по авторскому свидетельству №802399 от 24.02.1978 г., опубл. 07.02.81 г., кл. С23F 7/08.

В указанном способе описывается процесс получения термостойкого электроизоляционного покрытия, включающий нанесение водной суспензии гидроокиси магния с последующей сушкой, высокотемпературный отжиг, нанесение водного раствора, содержащего ортофосфорную кислоту и окись магния (электроизоляционное покрытие), с последующей сушкой и выпрямляющий отжиг при температуре 750-800°С.

При промышленном использовании описанного способа в значительной степени проявляется влияние внутренних напряжений на удельные магнитные потери, что, в свою очередь, приводит к ухудшению магнитных характеристик готовой стали. Устранить влияние внутренних напряжений на удельные магнитные потери готовой стали можно применением регулируемого охлаждения полосы в процессе выпрямляющего отжига.

Основным недостатком данного способа является отсутствие регулирования скорости охлаждения полосы в процессе выпрямляющего отжига.

Кроме того, производство полос из электротехнической анизотропной стали по известному способу связано с повышенным расходом электроэнергии, что обусловлено высокой температурой (750-800°С) по всей длине печи выпрямляющего отжига. При применении регулируемого охлаждения часть камеры выдержки используется в качестве части камеры регулируемого охлаждения и работает на пониженной температуре, что приводит к снижению расхода электроэнергии и обеспечивает плавное охлаждение полосы.

Данной работой установлено влияние температуры выпрямляющего отжига и скорости охлаждения анизотропной стали, после цикла выдержки, на удельные магнитные потери P 1,7/50. Изменение скорости охлаждения полосы электротехнической стали в интервале температур 800-850°С - 50-200°С оказывает как положительное, так и отрицательное влияние на удельные магнитные потери готовой электротехнической анизотропной стали.

Техническая задача изобретения состоит в получении электротехнической анизотропной стали с низкими удельными потерями за счет применении регулируемого охлаждения полосы электротехнической стали при выпрямляющем отжиге в интервале температур 800-850°С - 50-200°С.

При этом достигается не только улучшение магнитных свойств электротехнической анизотропной стали толщиной 0,23-0,55 мм, но и снижается себестоимость готовой продукции. Снижается расход электроэнергии, нагревательных элементов печи и других расходных материалов и комплектующих.

Технический результат достигается тем, что способ получения электротехнической анизотропной стали с термостойким электроизоляционным покрытием включает нанесение на полосу водной суспензии гидроокиси магния с последующей сушкой, высокотемпературный отжиг, нанесение электроизоляционного покрытия с последующей сушкой и выпрямляющий отжиг. В процессе выпрямляющего отжига (имеющего обычно три стадии, нагрев, выдержка и охлаждение), после цикла выдержки проводится регулируемое охлаждение в интервале температур 800-850°С - 50-200°С со скоростью 5-15°С/с.

Охлаждение полосы после выпрямляющего отжига с указанной скоростью до температуры менее 50°С уже не оказывает существенного влияния на магнитные характеристики готовой электротехнической стали.

Охлаждение полосы после выпрямляющего отжига с указанной скоростью до температуры более 200°С приводит к образованию внутренних напряжений в металле, отрицательно влияющих на удельные магнитные потери готовой электротехнической анизотропной стали.

Температура выпрямляющего отжига 800-850°С определена из условий отпуска полосы, при которых внутренние напряжения в готовой стали снимаются полностью. Увеличение максимальной температуры выпрямляющего отжига более 850°С не оказывает положительного влияния на магнитные свойства готовой электротехнической стали, но, в свою очередь, связано с увеличением затрат на производство, в частности с увеличением расхода электроэнергии.

Снижение максимальной температуры выпрямляющего отжига менее 800°С приводит к частичному снижению внутренних напряжений в электротехнической стали и, как следствие, к ухудшению удельных магнитных потерь.

Снижение скорости охлаждения полосы электротехнической анизотропной стали менее 5°С/с экономически невыгодно по причине снижения производительности агрегата выпрямляющего отжига.

При увеличении скорости охлаждения электротехнической анизотропной стали в процессе выпрямляющего отжига более 15°С/с внутренние напряжения в полосе снимаются частично, что также отрицательно влияет на удельные магнитные потери P1,7/50 готовой стали.

При охлаждении полосы в интервале температур 800-850°С - 50-200°С со скоростью 20-40°С/с внутренние напряжения в электротехнической анизотропной стали снимаются не полностью, а при охлаждении полосы в интервале температур 800-850°С - 50-200°С со скоростью более 40°С/с происходит их образование, что в обоих случаях приводит к увеличению удельных магнитных потерь P1,7/50.

Результаты реализации способа получения полос электротехнической анизотропной стали с улучшенными магнитными свойствами представлены в таблице.

Пример реализации данного изобретения.

Для эксперимента взяты плавки электротехнической анизотропной стали, прошедшие высокотемпературный отжиг. При выпрямляющем отжиге изменялась скорость охлаждения полос и проводилось изменение температуры окончания выпрямляющего отжига.

В результате проведенных работ установлено, что реализация предлагаемого изобретения, в частности применение регулируемого охлаждения полосы электротехнической анизотропной стали при выпрямляющем отжиге в интервале температур 800-850°С - 50-200°С со скоростью 5-15°С/с, позволяет существенно снизить удельные магнитные потери P 1,7/50 и соответственно улучшить качество готовой продукции (варианты 1-18).

Технико-экономические преимущества предложенного способа состоят в снижении расхода электроэнергии, нагревательных элементов печи выпрямляющего отжига и других расходных материалов за счет снижения температуры в печном пространстве.

В конечном итоге это приводит к общему снижению затрат на производство и, как следствие, к снижению себестоимости готовой продукции.

Таблица
ВариантТемпература выпрямляющего отжига, °СТемпература окончания отжига, °ССкорость охлаждения, °С/сУдельные магнитные потери Р1,7/50, Вт/кг
0,27 мм0,30 мм
Известный способ800 не регламентируется1,203 1,225
750 не регламентируется1,217 1,228
1800 20015 1,1461,197
2800200 91,1401,191
3800 20051,139 1,189
4800 5015 1,1141,141
580050 91,0921,135
6800 5051,087 1,133
7830 20015 1,1291,187
8830200 91,1261,185
9830 20051,125 1,182
10830 5015 1,1121,144
1183050 91,1101,143
12830 5051,106 1,140
13850 20015 1,1131,144
14850200 91,1101,144
15850 20051,084 1,143
16850 5015 1,0981,132
1785050 91,0951,129
18850 5051,088 1,123
19800 20020 1,1931,221
20800200 251,1971,223
21800 50201,161 1,215
22800 5025 1,1641,222
23800200 21,0851,131
24800 5021,084 1,132
25850 20020 1,2071,220
26850200 251,2021,211
27850 50201,170 1,223
28850 5025 1,1771,227
29850200 21,0811,149
30850 5021,071 1,141
31800 305 1,0851,131
3285030 51,0881,123
33800 22551,211 1,226
34850 2255 1,2071,226

Класс C21D8/12 при изготовлении изделий с особыми электромагнитными свойствами

способ производства холоднокатаной полуобработанной легированной электротехнической стали -  патент 2529326 (27.09.2014)
способ получения листа из неориентированной электротехнической стали -  патент 2529258 (27.09.2014)
способ производства нетекстурированной электротехнической стали с высокой магнитной индукцией -  патент 2527827 (10.09.2014)
лист из текстурированной электротехнической стали -  патент 2526642 (27.08.2014)
лист из текстурированной электротехнической стали и способ его изготовления -  патент 2524026 (27.07.2014)
способ производства особонизкоуглеродистой холоднокатаной изотропной электротехнической стали -  патент 2521921 (10.07.2014)
способ производства текстурованных листов из электротехнической стали -  патент 2519691 (20.06.2014)
способ производства высокопроницаемой анизотропной электротехнической стали -  патент 2516323 (20.05.2014)
способ производства текстурованного трасформаторного листа из тонкого сляба -  патент 2515978 (20.05.2014)
способ производства листовой электротехнической анизотропной стали и листовая электротехническая анизотропная сталь -  патент 2514559 (27.04.2014)
Наверх