сорбент для улавливания летучих форм радиоактивного иода на основе силикагеля

Классы МПК:G21F9/02 обработка газообразных отходов
B01J20/22 содержащие органический материал
Автор(ы):, , , , , , ,
Патентообладатель(и):Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (RU),
Кулюхин Сергей Алексеевич (RU)
Приоритеты:
подача заявки:
2007-02-26
публикация патента:

Изобретение относится к производству сорбентов для улавливания летучих форм радиоактивного иода и предназначено для предотвращения выброса этого радионуклида в окружающую среду при эксплуатационных режимах работы атомных электростанций (АЭС), а также при авариях на АЭС. Помимо этого сорбент может быть использован для очистки паровоздушных потоков от летучих соединений радиоактивного иода в технологических схемах по переработке отработавшего ядерного топлива. Гранулированный неорганический сорбент приготовлен на основе крупнопористого силикагеля, который импрегнирован серебром путем обработки его водным раствором азотнокислой соли серебра. Общее содержание серебра в сорбенте составляет 3-7 мас.%. 30-70% серебра восстановлено до металла азотсодержащими основаниями. В качестве азотсодержащего основания могут быть использованы: гидразин гидрат или его соли, гидроксиламин или его соли, а также аммиак. Преимуществами разработанного сорбента являются: высокая эффективность сорбции летучих соединений формы радиоактивного иода, включая йодистый метил, из паровоздушных потоков, т.е. надежность локализации; термостойкость до температуры 300°С; сохранение сорбционной способности после контакта с водной фазой; использование промышленно выпускаемого и широко применяемого для создания различных сорбентов и катализаторов крупнодисперсного силикагеля марки КСКГ. 2 табл.

Формула изобретения

Сорбент для улавливания летучих форм радиоактивного иода на основе силикагеля, импрегнированного азотно-кислым серебром, отличающийся тем, что 30-70% серебра находится в виде металла, полученного восстановлением ионов серебра азотсодержащими основаниями, а общее содержание серебра в сорбенте составляет 3-7 мас.%.

Описание изобретения к патенту

Изобретение относится к производству сорбентов для улавливания летучих форм радиоактивного иода и может быть использовано для предотвращения выброса этого радионуклида в окружающую среду при эксплуатационных режимах работы атомных электростанций (АЭС), а также при авариях на АЭС. Помимо этого данный сорбент может быть использован для очистки паровоздушных потоков от летучих соединений радиоактивного иода в технологических схемах по переработке отработавшего ядерного топлива.

Известен сорбент на основе цеолитов [Патент РФ №2104085, 10.02.98, бюл. №4], модифицированных ионами серебра или меди для поглощения радиоактивного иода и/или радиоактивного цезия из паровоздушной среды. Недостатком этого сорбента является то, что он представляет собой мелкодисперсный порошок с размерами частиц 2 мкм, вследствие чего фильтр на его основе обладает большим гидравлическим сопротивлением. При прохождении паровоздушной смеси с большим содержанием пара (более 50 об.%) через слой сорбента на основе цеолита возможно слипание частиц между собой и образование каналов в слое сорбента, что нарушает его однородность и снижает эффективность улавливания летучих форм радиоактивного иода. Кроме того, для приготовления такого сорбента, имеющего высокую эффективность сорбции органической формы радиоактивного иода - йодистого метила, требуется значительное количество серебра (от 30 до 60 мас.%), что сильно увеличивает стоимость сорбента.

Наиболее близким по технической сущности к заявляемому решению является гранулированный неорганический сорбент марки АС6120 [Т.Sakurai and A.Takahashi. J. of Nuclear Science and Technology, Vol.31, №1, pp.86-87 (January 1994)]. Сорбент АС6120 представляет собой мелкопористый силикагель, импрегнированный азотнокислым серебром. Содержание серебра в данном сорбенте составляет 12 мас.%. Недостатком сорбента АС6120 является тот факт, что серебро в нем находится в форме азотнокислой соли, хорошо растворимой в воде. Поэтому при прохождении через слой такого сорбента паровоздушной смеси, в которой присутствует капельная влага, особенно в условиях аварии, азотнокислое серебро может быть смыто водой и сорбент потеряет свою эффективность. Поэтому сорбент должен быть всегда нагрет до температуры выше 130°С. Кроме того, использование мелкопористого силикагеля в качестве основы создает затруднения при доступе летучих соединений радиоактивного иода к активным центрам сорбента, особенно в условиях прохождения паровоздушных потоков с большим содержанием пара.

Целью предлагаемого изобретения является получение гранулированного неорганического сорбента, обладающего высокими сорбционными характеристиками по отношению к летучим формам радиоактивного иода и достаточной устойчивостью в условиях образования капельной влаги.

Поставленная цель достигается тем, что предложен гранулированный сорбент "Физхимин" для улавливания летучих форм радиоактивного иода на основе крупнопористого силикагеля, импрегнированного серебром, в котором 30-70% серебра находится в виде металла, восстановленного азотсодержащими основаниями, а общее содержание серебра в сорбенте составляет 3-7 мас.%.

Для экспериментальной проверки заявляемого сорбента "Физхимин" были приготовлены образцы на основе промышленно выпускаемого и широко применяемого для очистки радиоактивных отходов крупнопористого силикагеля марки КСКГ (ГОСТ 3956-76). Заявляемый сорбент "Физхимин" получали путем обработки силикагеля марки КСКГ водным раствором азотнокислой соли Ag+ с концентрацией, соответствующей содержанию серебра в сорбенте 3-7 мас.%. Затем производили нагрев обработанного силикагеля до полного удаления влаги. После охлаждения осуществляли восстановление ионов серебра раствором азотсодержащего основания: гидразин гидратом или его солями; гидроксиламином или его солями; аммиаком. Концентрацию азотсодержащего основания подбирали с расчетом восстановления 30-70% серебра до металла. После перемешивания сорбент высушивали до полного удаления влаги.

Для определения общего содержания серебра сорбент "Физхимин" обрабатывали концентрированной азотной кислотой в течение 2 ч. Отделяли от него маточный раствор, промывали водой и затем проводили определение серебра в растворах титрованием по методу Фольгарда.

Количество не восстановленного серебра в сорбенте "Физхимин" определяли путем титрования по методу Фольгарда раствора, который получали в результате обработки сорбента дистиллированной водой в течение 24 ч. Количество восстановленного серебра в сорбенте рассчитывали по разнице между общим содержанием серебра и количеством невосстановленного серебра.

В таблице 1 представлены физико-химические характеристики полученного гранулированного сорбента "Физхимин".

Если содержание серебра в заявляемом сорбенте "Физхимин" менее 3 мас.%, то эффективность улавливания иода из паровоздушной смеси уменьшается в 2-3 раза, при этом фактор очистки DF паровоздушного потока от радиоактивного иода снижается более чем на порядок. Увеличение содержания серебра в сорбенте более 7 мас.% нецелесообразно, т.к. эффективность поглощения летучих соединений радиоактивного иода, включая йодистый метил, из паровоздушной смеси в этом случае практически не увеличивается, уже достигнув максимальной величины 99,99%.

Таблица 1.
Физико-химические характеристики гранулированного сорбента для улавливания летучих форм радиоактивного иода на основе силикагеля марки КСКГ.
NN ПараметрЗначение
1Исходный материал для приготовления сорбентов силикагель КСКГ (ГОСТ 3956-76)
2Цвет Темно-серый
3 ФормаГранулы
4Теплоемкость, Дж·кг -1·К-1 сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 795,5
5 Теплопроводность, Вт·м-1·К -1сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 1,4
6 Насыпной вес, кг/м3 580±100
7 Свободный объем, %60÷80
8Размер гранул, мм 0,50÷6,00
9Удельная поверхность, м 2310±20
10Средний радиус пор, Å 55±10
11 Суммарный объем пор, см3 1,4±0,2
12 Концентрация металла в сорбенте, вес.%3÷7
13Сорбционная емкость, г/кг (г поглощенного вещества / кг сорбента)  
СН3 I -0,5÷6,0
I2 -2,0÷15
14Эффективность поглощения из парогазового потока, % 
СН3I - сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 99,0%
I2 -сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 99,9%
15 Температура эффективной работы сорбента, °С 30÷300
16 Температура начала десорбции радиоактивного

иода, °С
600

Устойчивость сорбента "Физхимин" характеризуется сохранением его сорбционной способности после контакта с водной фазой. Для этой цели сорбент "Физхимин", а также силикагель, импрегнированный азотнокислым серебром (аналог сорбента АС6120), обрабатывали в течение 20 ч водой, высушивали при температуре 110°С и после этого определяли их сорбционную эффективность по отношению к наиболее трудно локализуемой форме летучих соединений радиоактивного иода - йодистому метилу.

В таблице 2 приведены результаты сорбции йодистого метила на образцах заявляемого сорбента "Физхимин" и сорбенте, имитирующем материал АС6120, до и после их контакта с водой.

Таблица 2. Сорбция СН3 131I из паровоздушного потока на гранулированных сорбентах, обработанных водой в течение 20 ч и высушенных при 110°С на воздухе после отделения жидкой фазы.

(m sorb=50 г, Tsorb=20°С, T gas=20°С, Sколонки=5,96 см 2, m(СН3 131 I)=100 мг, RH=3÷4 об.%, t=5 ч; сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 =3,00÷6,00 мм, сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 =2.38 см/с, сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 =6,00 сек, h=14,00 см)

№опытаМарка сорбента Степень поглощения СН3 I, %%
1Силикагель - AgNO3 (7 мас.%) 31,78
2"Физхимин" - 7Ag-m99,99
Обозначения: h - суммарная высота слоя сорбента в колонке; T sorb - температура сорбента; Tgas - температура паровоздушного потока; сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 - линейная скорость паровоздушного потока в колонке; сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 - время контакта "сорбент - паровоздушный поток" (для суммарного слоя сорбента); Sкол - площадь поперечного сечения колонки; RH - содержание пара в паровоздушном потоке; t - время эксперимента, включая время подачи СН 3 131I; сорбент для улавливания летучих форм радиоактивного иода на основе   силикагеля, патент № 2346346 - размер частиц сорбента; m - суммарная масса сорбента; 7Ag-m - сорбент, содержащий 7 мас.% серебра.

Преимуществами разработанного сорбента "Физхимин" являются: высокая эффективность сорбции летучих соединений формы радиоактивного иода, включая йодистый метил, из паровоздушных потоков, т.е. надежность локализации; термостойкость до температуры 300°С; сохранение сорбционной способности после контакта с водной фазой; использование промышленно выпускаемого и широко применяемого для создания различных сорбентов и катализаторов крупнодисперсного силикагеля марки КСКГ.

Класс G21F9/02 обработка газообразных отходов

устройство для очистки радиоактивной парогазовой смеси при аварийном выбросе водо-водяного ядерного реактора -  патент 2523436 (20.07.2014)
алюмосиликатный фильтр для высокотемпературной хемосорбции паров изотопов цезия -  патент 2498430 (10.11.2013)
способ улавливания хлороводорода -  патент 2494482 (27.09.2013)
сорбционно-фильтрующий многослойный материал и содержащий его фильтр -  патент 2487745 (20.07.2013)
способ и система концентрирования и утилизации инертных радиоактивных газов из газоаэрозольных выбросов энергоблоков атомных электростанций -  патент 2481658 (10.05.2013)
способ получения сорбента для улавливания летучих форм радиоактивного йода -  патент 2479347 (20.04.2013)
минеральная композиция для улавливания водорода, способ ее приготовления и применение минеральной композиции -  патент 2446006 (27.03.2012)
способ получения сорбента для удаления радионуклидов йода и/или его органических соединений -  патент 2414294 (20.03.2011)
способ очистки газовых потоков от йода -  патент 2414280 (20.03.2011)
установка для очистки воздуха -  патент 2406169 (10.12.2010)

Класс B01J20/22 содержащие органический материал

биоразлагаемый композиционный сорбент нефти и нефтепродуктов -  патент 2528863 (20.09.2014)
способ очистки сточных вод от тяжелых металлов методом адсорбции, фильтрующий материал (сорбент) и способ получения сорбента -  патент 2524111 (27.07.2014)
способ очистки проточной воды от загрязнителей -  патент 2516634 (20.05.2014)
композиции на основе хлорида брома, предназначенные для удаления ртути из продуктов сгорания топлива -  патент 2515451 (10.05.2014)
сорбент для диализа -  патент 2514956 (10.05.2014)
пеллеты и брикеты из спрессованной биомассы -  патент 2510660 (10.04.2014)
сорбирующие композиции и способы удаления ртути из потоков отходящих топочных газов -  патент 2509600 (20.03.2014)
способ подготовки образцов для анализа и картридж для него -  патент 2508531 (27.02.2014)
способ получения энтеросорбента -  патент 2497537 (10.11.2013)
композиция каликс[4]аренов для сорбции азо-красителей из водных растворов -  патент 2489205 (10.08.2013)
Наверх