способ извлечения никеля из отработанных щелочных аккумуляторов ламельной конструкции

Классы МПК:H01M10/54 ремонт или восстановление пригодности частей отработавших аккумуляторов
H01M10/24 щелочные аккумуляторы
Автор(ы):
Патентообладатель(и):Закрытое Акционерное Общество "Кузбассэлемент" (RU)
Приоритеты:
подача заявки:
2006-09-27
публикация патента:

Изобретение относится к электротехнике и может быть использовано для извлечения никеля из отработанных щелочных аккумуляторов ламельной конструкции. Техническим результатом изобретения является увеличение степени извлечения никеля из ламельного электрода отработанного щелочного аккумулятора. Согласно изобретению способ извлечения никеля из отработанных щелочных аккумуляторов ламельной конструкции путем измельчения окисно-никелевых электродов и отделения никельсодержащей массы от фрагментов ламели, при этом перед измельчением окисно-никелевых электродов и отделением никельсодержащей массы от фрагментов ламели производится термическая обработка электродов при температуре 270°С в течение 7 часов, а затем при температуре 350°С в течение 2 часов.

Формула изобретения

Способ извлечения никеля из отработанных щелочных аккумуляторов ламельной конструкции путем измельчения окисно-никелевых электродов и отделения никельсодержащей массы от фрагментов ламели, отличающийся тем, что перед измельчением окисно-никелевых электродов и отделением никельсодержащей массы от фрагментов ламели производится термическая обработка электродов при температуре 270°С в течение 7 ч, а затем при температуре 350°С в течение 2 ч.

Описание изобретения к патенту

Изобретение относится к электротехнике и может быть использовано для извлечения никеля из отработанных щелочных аккумуляторов ламельной конструкции с целью его дальнейшей переработки, в том числе изготовления активной массы на основе гидрата закиси никеля.

Известен промышленный способ изготовления основного компонента активной массы окисно-никелевых электродов - гидрата закиси никеля (ГЗН) - из отработавших срок эксплуатации щелочных аккумуляторов ламельной конструкции (никель-кадмиевых, никель-железных), основанный на использовании в качестве никельсодержащего сырья ламельного порошка окисно-никелевых электродов, дисперсностью не более 2,5 мм. Никелевый порошок получают дроблением и измельчением никелевых электродов, после чего для удаления железной составляющей порошок очищают магнитной сепарацией. Извлечение никеля при этом составляет 96%, остальные 4% никеля концентрируются в магнитном продукте, который направляется на производство ферроникеля.

Состав немагнитной фракции, направляемой на производство ГЗН:

никель (Ni) 33-39 мас.% в виде гидрата закиси никеля Ni(OH) 2, железо общее (Fe) - не более 3 мас.%, примеси кальция (Са), магния (Mg), кремния (Si).

Состав магнитной фракции, направляемой на производство ферроникеля: железо (Fe) 60-80 мас.%; никель (Ni) 4-6 мас.%

Данный способ наиболее близок к заявляемому и запатентован патентом Российской Федерации (1).

К недостаткам указанного способа извлечения никельсодержащей массы из ламельного электрода можно отнести:

1. Необходимость производить измельчение электродов до дисперсности не более 2,5 мм, что требует применения специального оборудования и ведет к дополнительному загрязнению никелевой массы примесями вследствие износа режущих поверхностей;

2. Низкая степень извлечения никеля из смеси никелевого порошка с измельченной ламельной лентой при последующей магнитной сепарации вследствие налипания порошка на поверхность ламели.

Описание изобретения.

Сущность изобретения состоит в том, что для увеличения степени извлечения никеля из ламельного электрода отработанного щелочного аккумулятора, содержащийся в электроде гидрат закиси никеля переводится в закись никеля путем термической обработки электрода по реакции:

Ni(OH)2 способ извлечения никеля из отработанных щелочных аккумуляторов   ламельной конструкции, патент № 2345449 NiO+Н2O.

Проведенные исследования позволили установить, что при длительной эксплуатации щелочного аккумулятора ламельной конструкции происходит цементация активной массы окисно-никелевого электрода и, вследствие этого, сцепление массы с внутренней шероховатой поверхностью ламели.

При измельчении никелевого электрода некоторая часть активной массы, вследствие указанных причин, остается на внутренней поверхности ламели. Так, при измельчении предварительно подсушенных при t=100°C электродов с величиной измельчения менее 16 мм и последующей сепарации смеси порошка и кусков ламели на грохоте и магните получены следующие результаты:

для электродов толщиной 1,2 мм степень разделения 58%;

для электродов толщиной 4,0 мм степень разделения 70%.

Задачей заявляемого решения является максимальное отделение никелевого порошка от материала ламели.

Окисно-никелевые ламельные электроды в количестве 1000 кг, предварительно отмытые в проточной воде от шламов, помещаются в печь с установленной температурой нагрева на регуляторе 350°С. Мощность нагревательных элементов печи 36 кВт. Рабочий объем печи - вентилируемый. На задней панели печи имеется заслонка для удаления образующихся в процессе сушки газов. При достижении температуры 230°С из объема печи начинает выделяться водяной пар, что является следствием протекания процесса термического разложения гидрата закиси никеля с образованием закиси никеля (NiO) и воды. При этом происходит замедление роста температуры и при достижении 270°С температура остается стабильной на протяжении 7 часов. После чего интенсивность выделения пара заметно снижается и в течение часа температура в печи поднимается до заданного значения (350°С). При данной температуре электроды выдерживаются в течение 2 часов, после чего производится отключение печи. После охлаждения электроды направляются на установку извлечения NiO.

Последовательность операций при подаче электродов в установку:

- измельчение электродов;

- отделение мелкодисперсной фракции от крупнодисперсной;

- магнитное сепарирование мелкодисперсной фракции.

Подача электродов на узел дробления осуществляется вручную. Измельчение производится вращающимися ножами, величина помола - не более 16 мм.

Измельченные электроды шнеком подаются во вращающийся барабан грохота. Величина ячейки грохота 1,2 мм. При этом в мелкодисперсную фракцию поступает порошок NiO с некоторым содержанием графита (14-16%) и металла ламельной ленты (до 5%). В крупнодисперсную фракцию отделяется материал ламельной ленты. Состав отделяемого материала ламельной ленты (крупнодисперсная фракция) следующий:

- Fe металл, до 93%;

- NiO не более 4%;

- С (графит) до 2%.

Мелкодисперсная фракция, содержащая закись никеля (NiO), из накопительного бункера шнеком подается на магнитный сепаратор для доочистки порошка от металлических включений. На выходе из сепаратора никельсодержащий порошок имеет следующий состав:

NiO - 42-52 мас.% по никелю;

С (графит) - 14-16%;

Fe - до 2% (в том числе, в виде окислов).

Степень извлечения никеля из ламельного электрода при заявленном способе не менее 99%, что приводит к экономии ресурсов, к снижению себестоимости готового продукта - гидрата закиси никеля, не ухудшает качественные характеристики материала при его дальнейшем переделе.

Источники информации

1. Патент РФ №2178931 кл. С1 2000.11.08

2. Дасоян М.А., Новодержкин В.В., Томашевский Ф.Ф. Производство электрических аккумуляторов. М., «Высшая школам, 1977.

Класс H01M10/54 ремонт или восстановление пригодности частей отработавших аккумуляторов

способ ускоренного формирования и восстановления емкости никель-кадмиевых аккумуляторов переменным асимметричным током -  патент 2521607 (10.07.2014)
способ утилизации никель-цинковых щелочных аккумуляторов -  патент 2479078 (10.04.2013)
способ переработки целых свинцовых аккумуляторов и устройство для его осуществления -  патент 2444096 (27.02.2012)
способ восстановления аккумуляторной батареи и устройство для его осуществления -  патент 2437190 (20.12.2011)
способ переработки оксидно-никелевых электродов -  патент 2410801 (27.01.2011)
способ восстановления негерметичного щелочного аккумулятора -  патент 2373617 (20.11.2009)
способ извлечения кремнезема, имеющегося в сепараторах между элементами свинцово-кислотных батарей -  патент 2359370 (20.06.2009)
способ изготовления компонентов активных масс отрицательных электродов для щелочных аккумуляторов при их регенеративной переработке -  патент 2344520 (20.01.2009)
способ очистки раствора сульфата никеля от железа -  патент 2328061 (27.06.2008)
способ ускоренного формирования и восстановления емкости герметичных никель-кадмиевых аккумуляторных батарей при помощи заряда асимметричным током -  патент 2313863 (27.12.2007)

Класс H01M10/24 щелочные аккумуляторы

катодный материал для резервной батареи, активируемой водой -  патент 2510907 (10.04.2014)
новый серебряный положительный электрод для щелочных аккумуляторных батарей -  патент 2428768 (10.09.2011)
способ восстановления негерметичного щелочного аккумулятора -  патент 2373617 (20.11.2009)
способ изготовления компонентов активных масс отрицательных электродов для щелочных аккумуляторов при их регенеративной переработке -  патент 2344520 (20.01.2009)
способ получения активной массы для кадмиевых электродов из отработанного щелочного никель-кадмиевого аккумулятора -  патент 2300828 (10.06.2007)
способ получения пористого композиционного материала для сепараторов щелочных аккумуляторных батарей -  патент 2298261 (27.04.2007)
способ изготовления щелочного аккумулятора с окисно-никелевым положительным и кадмиевым отрицательным электродами -  патент 2280298 (20.07.2006)
композиционный материал для сепаратора щелочных аккумуляторных батарей -  патент 2231868 (27.06.2004)
способ изготовления электрода щелочного аккумулятора -  патент 2229185 (20.05.2004)
положительный электрод щелочного аккумулятора -  патент 2207664 (27.06.2003)
Наверх