псевдоизотермический радиальный реактор

Классы МПК:B01J8/04 в присутствии жидкости или газа, пропускаемых последовательно через два или более слоя
Автор(ы):, ,
Патентообладатель(и):МЕТАНОЛ КАСАЛЕ С.А. (CH)
Приоритеты:
подача заявки:
2004-01-15
публикация патента:

Устройство предназначено для проведения каталитических реакций. Псевдоизотермический радиальный химический реактор имеет цилиндрический корпус, закрытый с противоположных концов плоскими днищами, и зону реакции. В зоне реакции находится слой катализатора и множество расположенных в нем теплообменников. Дополнительно реактор имеет, по меньшей мере, одну вторую зону реакции, в которой находится слой катализатора и множество расположенных в нем теплообменников. При этом вторая зона сообщается с первой зоной реакции. Данная конструкция устройства обеспечивает возможность эффективного контроля протекающей реакции. 2 н. и 5 з.п. ф-лы, 3 ил. псевдоизотермический радиальный реактор, патент № 2340391

псевдоизотермический радиальный реактор, патент № 2340391 псевдоизотермический радиальный реактор, патент № 2340391 псевдоизотермический радиальный реактор, патент № 2340391

Формула изобретения

1. Псевдоизотермический радиальный химический реактор для проведения каталитических реакций, имеющий, по существу, цилиндрический корпус (2), закрытый с противоположных концов соответствующими плоскими днищами (3 и 4), и зону (8) реакции, в которой находится слой (11) соответствующего катализатора и множество расположенных в нем теплообменников (22), отличающийся тем, что он имеет, по меньшей мере, одну вторую зону (26) реакции, в которой находится слой (29) соответствующего катализатора и множество расположенных в нем теплообменников (36) и которая сообщается с первой зоной (8) реакции.

2. Химический реактор по п.1, отличающийся тем, что первая и вторая зоны (8 и 26) реакции расположены последовательно.

3. Химический реактор по п.2, отличающийся тем, что теплообменники (22), расположенные, по меньшей мере, в одной из зон (8, 26) реакции, соединены с трубопроводами, выходящими из реактора наружу.

4. Химический реактор по п.3, отличающийся тем, что теплообменники (22, 36), расположенные в двух зонах (8, 26) реакции, сообщаются друг с другом.

5. Химический реактор по п.4, отличающийся тем, что, по меньшей мере, один из теплообменников (22, 36) выполнен в виде плоского полого прямоугольника.

6. Химический реактор по п.5, отличающийся тем, что теплообменники (22) расположены радиально вокруг оси (А-А) реактора.

7. Способ оптимизации псевдоизотермических каталитических реакций, заключающийся в том, что исходные реагенты подают в зону (8) реакции, в которой находится слой (11) катализатора и множество расположенных в слое (11) катализатора теплообменников (22), отличающийся тем, что собирают выходящие из зоны (8) реакции реагенты и продукты реакции, реагенты и продукты реакции направляют во вторую зону (26) реакции, в которой находится слой (29) соответствующего катализатора и соответствующее множество расположенных во втором слое (29) катализатора теплообменников (36), реагенты и продукты реакции подают во вторую зону (26) реакции и заканчивают реакцию во втором слое (29) катализатора.

Описание изобретения к патенту

Область техники, к которой относится изобретение

Настоящее изобретение относится к псевдоизотермическому радиальному химическому реактору, предназначенному для проведения каталитических реакций и имеющему по существу цилиндрический корпус, закрытый с противоположных концов соответствующими плоскими днищами, и зону реакции по меньшей мере с одним слоем соответствующего катализатора и множеством закрепленных на корпусе теплообменников.

Под встречающимся в остальной части описания и в формуле изобретения термином "псевдоизотермический реактор" имеется в виду предназначенный для проведения химических реакций реактор, в котором температуру реакции регулируют в узком диапазоне значений с небольшими отклонениями от заданной оптимальной величины.

Кроме того, под основной осью реактора понимается ось, относительно которой исходные реагенты и продукты реакции движутся в зоне реакции в радиальном направлении.

Уровень техники

Известно, что при проведении химических реакций во всех псевдоизотермических реакторах очень важно, чтобы исходные реагенты и продукты реакции оставались в реакторе в течение определенного времени, необходимого для полного взаимодействия реагентов и теплообмена смеси реагентов и продуктов реакции с внешней средой (например, с помощью расположенного в зоне реакции теплообменника) и поддержания внутри реактора по мере протекания реакции соответствующих псевдоизотермических условий.

В настоящее время широко используются псевдоизотермические реакторы, в которых реагенты проходят через слой катализатора в осевом направлении. Такие реакторы обладают высокой производительностью, однако из-за движения газа через слой катализатора в осевом направлении в них возникают большие потери давления. Уменьшить потери давления можно, как известно, за счет уменьшения высоты слоя катализатора с одновременным увеличением во избежание снижения производительности радиуса реактора. Выполненные таким образом реакторы, т.е. реакторы с большим диаметром корпуса, по конструктивным соображениям экономически не эффективны.

Для снижения потерь давления и одновременного решения проблем конструктивного характера и связанного с этим снижения стоимости псевдоизотермических каталитических реакторов были разработаны реакторы с радиальным потоком газов в слое катализатора, отличающиеся сравнительно большой высотой и большим соотношением между высотой реактора и его диаметром, которое, например, в реакторах синтеза аммиака достигает 10.

Такие реакторы, решающие и проблему, связанную с высокими потерями давления, и проблемы экономического характера, связанные с конструкцией корпуса большого диаметра, тем не менее обладают одним специфическим и весьма существенным недостатком. Было установлено, что в таких радиальных реакторах из-за большой длины слоя катализатора газообразные реагенты после распределения по стенке корпуса на входе в слой катализатора обладают низкой поперечной скоростью, недостаточной для их эффективного прохождения через слой катализатора. Низкая скорость проходящих через слой катализатора реагентов отрицательно влияет на коэффициент теплопередачи между реагентами и расположенными в слое катализатора пластинчатыми теплообменниками. По этим причинам оптимальный контроль псевдоизотермичности реакции в известных радиальных каталитических реакторах становится по существу невозможным.

Краткое изложение сущности изобретения

В основу настоящего изобретения была положена задача разработать химический реактор упомянутого выше типа, конструктивные и функциональные особенности которого обеспечивали бы возможность эффективного контроля псевдоизотермичности протекающей в нем реакции и позволяли бы устранить недостатки, присущие известным реакторам подобного типа.

Указанная выше задача решается с помощью псевдоизотермического радиального химического реактора для проведения каталитических реакций, имеющего по существу цилиндрический корпус, закрытый с противоположных концов соответствующими плоскими днищами, и зону реакции, в которой находится слой соответствующего катализатора и множество расположенных в нем теплообменников, и отличающегося наличием по меньшей мере одной второй зоны реакции, в которой находится слой соответствующего катализатора и множество расположенных в нем теплообменников и которая сообщается с первой зоной реакции.

Другие отличительные особенности и преимущества изобретения более подробно рассмотрены ниже на примере одного из иллюстрирующих, но не ограничивающих объем изобретения вариантов выполнения предлагаемого в нем химического реактора со ссылкой на прилагаемые к описанию чертежи.

Краткое описание чертежей

На прилагаемых к описанию чертежах показано:

на фиг.1 - схематичное изображение в продольном разрезе химического реактора, предлагаемого в настоящем изобретении, и

на фиг.2 и 3 - два схематичных изображения в поперечном сечении реактора, показанного на фиг.1.

Предпочтительный вариант осуществления изобретения

Схематично показанный на фиг.1 псевдоизотермический радиальный химический реактор, обозначенный позицией 1, имеет вертикальную ось А-А и предназначен для проведения химических реакций в слое катализатора, в качестве (не ограничивающего объем изобретения) примера которых можно назвать, в частности, синтез аммиака.

Реактор 1 имеет цилиндрический корпус 2, закрытый с противоположных концов нижним и верхним плоскими днищами 3 и 4. В верхнем днище 4 выполнено отверстие 5 для подачи в реактор исходных реагентов, а в нижнем днище 3 - отверстие 6 для отбора из реактора продуктов реакции.

В корпусе 2 реактора на его центральной оси расположен цилиндрический патрон 7, образующий в реакторе между верхней плоскостью 9 и нижней плоскостью 10 первую зону 8 реакции, в которой находится удерживаемый в зоне реакции обычными и поэтому не показанными на чертеже средствами слой 11 катализатора, через который в радиальном направлении проходят газообразные реагенты.

Границами слоя 11 катализатора в направлении, параллельном оси А-А, служат внутренняя 12 и наружная 13 стенки по существу цилиндрической круглой корзины 14, в которых выполнены перфорированные отверстия, образующие радиальные каналы для прохода реагентов через слой 11 катализатора.

Снизу корзина 14 с катализатором закрыта плоским днищем 16, расположенным в плоскости 10.

В центре корзины на оси корпуса реактора расположена цилиндрическая труба 17, соединяющая первую камеру 18 для сбора газообразных реагентов, ограниченную снизу плоскостью 9, с ограниченной сверху плоскостью 10 второй камерой 19, в которой собираются газы, выходящие из первой зоны 8 реакции.

Корзина 14 расположена внутри патрона 7 с зазором 20, предназначенным для распределения газообразных реагентов в слое 11 катализатора. Аналогичным образом и центральная труба 17 расположена внутри корзины 14 с зазором 21, в котором собирается смесь исходных реагентов и продуктов реакции, выходящих из слоя 11 катализатора.

В слое 11 катализатора находятся погруженные в катализатор и закрепленные соответствующим образом в корзине теплообменники 22. Теплообменники 22 имеют форму плоских полых предпочтительно расположенных в радиальных плоскостях прямоугольников с параллельными оси А-А корпуса 2 длинными сторонами 23.

Теплообменники 22 можно, не ограничивая этим вариантом объем изобретения, расположить в нескольких концентричных рядах, оси которых совпадают с осью корпуса 2 реактора.

Теплообменники 22 имеют расположенные на противоположных коротких сторонах входной патрубок 24 и выходной патрубок 25 для рабочей теплообменной текучей среды.

Отличительной особенностью предлагаемого в изобретении реактора в предпочтительном варианте его выполнения является наличие в корпусе 2 второй зоны 26 реакции, ограниченной сверху плоскостью 27, а снизу - плоскостью 28, в которой находится слой 29 соответствующего катализатора, через который в радиальном направлении проходят газообразные реагенты и продукты реакции.

Вторая зона 26 реакции сообщается с первой зоной 8 реакции упомянутой выше камерой 19, нижняя граница которой расположена в плоскости 27.

Границами второго слоя 29 катализатора в направлении, параллельном оси А-А, служат внутренняя 30 и наружная 31 стенки цилиндрической круглой корзины 32, в которых выполнены перфорированные отверстия, образующие радиальные каналы для прохода реагентов через второй слой 29 катализатора.

Снизу корзина 32 закрыта плоским круглым днищем 34, расположенным в плоскости 28.

Вторая корзина 32 расположена в патроне 7 с зазором 48, предназначенным для распределения реагентов в слое 29 катализатора. Зазор 48 между второй корзиной и патроном сообщается с первым слоем 11 катализатора коллектором 21 (внутренним отверстием центральной трубы первой зоны реакции) и камерой 19, в которой собираются газы, выходящие из первой зоны реакции.

Между второй корзиной 32 и осью А-А корпуса 2 реактора расположена соединенная трубой 47 с выходным патрубком 6 реактора камера 35, в которой собирается выходящая из второго слоя 29 катализатора газообразная смесь реагентов и продуктов реакции.

В слое 29 катализатора находятся погруженные в катализатор и закрепленные соответствующим образом теплообменники 36. Теплообменники 36 имеют форму плоских полых прямоугольников с параллельными оси А-А корпуса 2 длинными сторонами 37.

Теплообменники 36 можно, не ограничивая этим вариантом объем изобретения, расположить в нескольких концентричных рядах, оси которых совпадают с осью корпуса 2 реактора.

Теплообменники 36 имеют входной патрубок 38 и выходной патрубок 39 для рабочего текучего теплоносителя, которые расположены на одной и той же короткой стороне теплообменников 36.

Теплообменники 36 соединены с центральной трубой 17 трубами 41 и коллектором 42 тороидальной формы.

Теплообменники 36 соединены также трубами 43 с теплообменниками 22.

Во время работы исходные реагенты непрерывно подают в реактор 1 через входное отверстие 5.

Подаваемые в реактор исходные реагенты проходят по трубе 44 в кольцевой распределитель 45 и по трубам 46 попадают внутрь каждого теплообменника 22, в котором исходные реагенты обмениваются теплом с находящимся в первой зоне 8 реакции катализатором.

Протекающие через теплообменники 22, а также через теплообменники 36 реагенты выполняют функцию рабочего текучего теплоносителя.

Выходящий из теплообменников 36 поток реагентов по трубам 41 попадает сначала в тороидальный коллектор 42, а из него - в центральную трубу 17.

По центральной трубе 17 реагенты поднимаются вверх в камеру 18, из которой они по зазору 20 опускаются вниз и, проходя в радиальном направлении через стенку 12 корзины 14, распределяются в первой зоне 8 реакции, в которой они частично вступают в реакцию.

Выходящая из зоны 8 реакции смесь реагентов и продуктов реакции собирается в зазоре 21, из которого она попадает в камеру 19, проходит по зазору 48 и распределяется во второй зоне 26 реакции.

Реакция заканчивается во второй зоне 26 реакции, через находящийся в которой слой 29 катализатора реагенты проходят в радиальном направлении.

Выходящие из второй зоны 26 реакции продукты реакции собираются в камере 35, из которой они по трубе 47 попадают в выходной патрубок реактора.

В описанном выше реакторе газообразные реагенты распределяются по стенкам на входе в соответствующий слой катализатора на более коротком расстоянии, чем в известных реакторах с одним слоем катализатора, и поэтому проходят через слои 11 и 29 катализатора с большей радиальной скоростью.

В результате повышается точность контроля изотермичности реакции и увеличивается выход реактора, повышается срок службы катализатора и долговечность подверженных износу внутренних элементов реактора.

Предлагаемый в предпочтительном варианте осуществления изобретения реактор позволяет в зависимости от интенсивности теплообмена расположить в каждом слое катализатора разное количество теплообменников.

Иными словами, в предлагаемом в изобретении реакторе, поперечные сечения которого в плоскостях В-В и С-С показаны соответственно на фиг.2 и 3, в первом слое 11 катализатора, в котором реагенты имеют максимальную концентрацию, а реакция протекает с относительно высокой скоростью и поэтому требует более интенсивного теплообмена, можно расположить наибольшее количество теплообменников 22.

И, наоборот, во втором слое 29 катализатора в том месте, где концентрация реагентов меньше и где реакция протекает медленнее и поэтому требует менее интенсивного теплообмена, требуется меньшее, чем в первом слое, количество теплообменников 36.

При этом очевидно, что общее количество используемых в реакторе теплообменников уменьшается и, соответственно, снижается его стоимость.

В предлагаемом в изобретении реакторе для регулирования скорости проходящих через катализатор газообразных реагентов и тем самым контроля изотермичности реакции можно менять и длину каждого слоя катализатора (см., например, вариант, показанный на фиг.1).

Использование предлагаемого в изобретении реактора позволяет также предложить соответствующий способ оптимизации псевдоизотермических каталитических реакций, заключающийся в том, что исходные реагенты подают в зону 8 реакции, в которой находится слой 11 катализатора и множество расположенных в слое 11 катализатора теплообменников 22, собирают выходящие из зоны 8 реакции реагенты и продукты реакции, направляют выходящие из первой зоны реакции реагенты и продукты реакции во вторую зону 26 реакции, в которой находится слой 29 соответствующего катализатора и соответствующее множество расположенных во втором слое 29 катализатора теплообменников 36, подают выходящие из первой зоны реакции реагенты и продукты реакции во вторую зону 26 реакции и заканчивают реакцию во втором слое 29 катализатора.

Изобретение предполагает возможность его реализации различными путями, не выходящими за его объем, определяемый формулой изобретения.

Класс B01J8/04 в присутствии жидкости или газа, пропускаемых последовательно через два или более слоя

устройство для синтеза безводного галоида водорода и безводного диоксида углерода -  патент 2529232 (27.09.2014)
мембранный реактор -  патент 2527785 (10.09.2014)
устройство для получения серы -  патент 2501600 (20.12.2013)
устройство и способ для синтеза аммиака -  патент 2497754 (10.11.2013)
способ получения хлора окислением в газовой фазе -  патент 2475447 (20.02.2013)
система для получения аммиака (варианты), способ получения аммиака и способ модернизации системы для получения аммиака -  патент 2469953 (20.12.2012)
совместное получение ароматических соединений в установке производства пропилена из метанола -  патент 2462446 (27.09.2012)
способ и устройство для алкилирования ароматического соединения алифатическим моноолефиновым соединением с от 8 до 18 атомами углерода -  патент 2458032 (10.08.2012)
многореакторная химическая производственная система -  патент 2455059 (10.07.2012)
способ и реактор фторирования -  патент 2446139 (27.03.2012)
Наверх