способ определения изотопного состава гексафторида урана с помощью многоколлекторного масс-спектрометра

Классы МПК:H01J49/26 масс-спектрометры или разделительные трубки
Автор(ы):, , , , ,
Патентообладатель(и):Открытое акционерное общество "УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ" (RU)
Приоритеты:
подача заявки:
2007-07-24
публикация патента:

Изобретение относится к области электротехники, в частности к контрольно-измерительной технике, а именно к многоколлекторным масс-спектрометрам, и может быть использовано в различных отраслях химической промышленности для определения изотопного состава веществ, в частности, на предприятиях ядерно-топливного цикла - для определения изотопного состава гексафторида урана (ГФУ). Способ заключается в регистрации ионных пучков каждого из изотопов урана на своем коллекторе и расчете атомной доли изотопов с учетом предварительно определенных коэффициентов калибровки каналов регистрации ионных токов. При этом для исключения погрешности измерений, обусловленной наличием в масс-спектрометре эффектов фракционирования изотопов и погрешностью определения коэффициентов калибровки, предварительно с помощью двух стандартных образцов (СО) для каждого изотопа определяют линейные зависимости f(C i)=Спасп,iизмер,i , которые затем используют для корректировки коэффициентов калибровки каналов регистрации урана-234, 235, 236 (Ki ), после чего проводят повторное вычисление данных изотопов урана. Изобретение позволяет существенно упростить существующие методы изотопного анализа гексафторида урана без ухудшения их характеристик погрешности и снизить количество используемых СО, что является техническим результатом изобретения. 1 з.п. ф-лы, 3 табл.

Формула изобретения

1. Способ определения изотопного состава гексафторида урана (ГФУ) с помощью многоколлекторного масс-спектрометра, включающий предварительное определение коэффициентов калибровки каналов регистрации ионных токов (Ki), ввод пробы ГФУ в масс-спектрометр с одновременной регистрацией ионных токов каждого изотопа (Ui) на отдельном коллекторе и расчет атомной доли i-го изотопа урана по формуле

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где n - регистрируемые изотопы урана: 234, 235, 236, 238, i - изотопы урана 234, 235, 236,

отличающийся тем, что перед измерением проб ГФУ для каждого анализируемого изотопа с помощью двух стандартных образцов предварительно определяют линейную зависимость

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i, способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i - постоянные величины; C i, C235 - значения атомной доли i-го изотопа и урана-235, определенные по формуле (1), %; C i,пасп - паспортное значение атомной доли i-го изотопа в измеряемом стандартном образце (СО),

а затем проводят повторное вычисление атомной доли изотопа урана по формуле (1), в которой значение коэффициентов калибровки каналов регистрации изотопов урана-234, 235, 236 уменьшают на величину

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где Ki - начальный коэффициент калибровки канала регистрации i-го изотопа урана, используемый в (1) для определения начального значения Ci .

2. Способ по п.1, отличающийся тем, что повторное вычисление атомной доли урана-234 или урана-236 в случае способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 iспособ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 0 и способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i>>способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i проводят по формуле

C i'=Ci+способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i,

i - изотоп урана-234 или 236;

Ci - значение атомной доли i-го изотопа урана, определенное по формуле (1), %;

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i - постоянная величина, определяемая зависимостью (2).

Описание изобретения к патенту

Изобретение относится к контрольно-измерительной технике, а именно к многоколлекторным масс-спектрометрам, и может быть использовано в различных отраслях химической промышленности для определения изотопного состава веществ, в частности, на предприятиях ядерно-топливного цикла - для определения изотопного состава гексафторида урана (ГФУ).

Известно [1], что определение изотопного состава веществ с помощью масс-спектрометра состоит из нескольких этапов: отбора пробы анализируемого вещества и введения ее в область ионизации; ионизации; создания моноэнергетического и узкосфокусированного пучка ионов; разделения ионов в масс-анализаторе на пучки ионов, соответствующие различным изотопам; регистрации ионных пучков. При этом методы определения изотопного состава могут быть как относительными с применением в измерительном цикле стандартных образцов (СО) изотопного состава вещества, так и абсолютными - без использования СО.

Самым простым методом определения изотопного состава ГФУ [2] является абсолютный одноколлекторный метод, при котором все изотопы вещества последовательно регистрируются на одном коллекторе приемника ионов масс-спектрометра. После обработки полученного масс-спектра, заключающейся в учете фона, шумов, наложений рассеянного ионного тока и изменения интенсивности ионных токов в течение времени измерений, определяется сумма выходных сигналов U=способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 Ui, а затем атомная доля i-го изотопа. Расчет проводится по формуле:

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где Ui - величина выходного сигнала, при регистрации i-го изотопа, В (А);

n - количество регистрируемых изотопов.

Величина Ui определяется либо по вольтметру при настройке на коллектор пучка i-го изотопа, либо по высоте пика на спектрограмме, полученной на каком-либо записывающем устройстве, либо по площадям пиков в случае, когда ширина входной щели приемника меньше ширины пучка. При этом нет необходимости определять именно ионный ток, а достаточно получить величину, пропорциональную ему: напряжение, высоту или площадь пика.

Однако одним из главных недостатков абсолютного одноколлекторного метода измерений изотопного состава веществ является сильное влияние на его результаты дрейфа различных параметров (давления пробы в напускном объеме или ионизационной камере, параметров работы ионно-оптической системы прибора и др.), а также возможного присутствия эффекта памяти масс-спектрометра, обусловленного изотопным разбавлением измеряемой пробы остатками от предыдущих проб, десорбирующихся с поверхности системы ввода.

Известен способ высокоточных измерений изотопного состава веществ относительным многоколлекторным методом [1], при котором в масс-спектрометр вместе с пробой вещества последовательно вводится стандартный образец. Недостатками этого способа являются значительный расход дорогостоящих СО и необходимость подбора их изотопного состава близким к изотопному составу пробы, что зачастую является трудновыполнимым.

Развитие изотопной масс-спектрометрии привело к появлению абсолютного многоколлекторного метода измерений, при котором проводят калибровку каналов регистрации ионных токов с помощью последовательно подаваемого на каждый коллектор одного ионного луча [3] или на вход каждого усилителя ионного тока (УИТ) - постоянного электрического тока, получаемого с помощью высокостабильного источника [4].

Способ калибровки [4] является более точным, однако требует наличия дополнительных устройств в приемнике ионов масс-спектрометра. При выполнении калибровки для каждого канала регистрации определяется относительный коэффициент калибровки Ki, равный отношению выходного сигнала с одного из УИТ к выходному сигналу i-го УИТ. Величина K i определяется, главным образом, отношением значений используемых высокоомных сопротивлений обратной связи УИТ. В этом случае атомная доля i-го изотопа вещества может быть определена по формуле:

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где Ki - коэффициент относительной калибровки канала регистрации i-го изотопа;

U i - величина выходного сигнала или ионного тока, при регистрации i-го изотопа, В (А).

Однако только при точном определении коэффициентов калибровки Ki и обеспечении отсутствия в масс-спектрометре эффектов фракционирования пробы (изменения ее изотопного состава) по мере поступления ее из отборника до приемника ионов, используя выражение (2), можно точно определить изотопный состав вещества без какого-либо использования СО.

Известен способ исключения погрешности при определении коэффициентов калибровки (dKi) путем установки в приемнике ионов специальной релейной матрицы, обеспечивающей последовательное переключение каждого из коллекторов со всеми каналами усиления ионного тока [5], что исключает влияние dKi на результат измерений. При этом погрешность определения изотопного состава вещества будет зависеть только от величины фракционирования (дискриминации) пробы (dUi). Однако именно возникновение эффекта фракционирования пробы (величин dU i) в современных изотопных масс-спектрометрах существенно уменьшает преимущества абсолютных методов измерений перед относительными, в которых используют СО.

Наиболее близким к заявляемому из перечисленных способов является способ определения изотопного состава аргона, приведенный в [3]. Способ заключается в предварительном определении коэффициентов относительной калибровки каналов регистрации УИТ (Ki) многоколлекторного масс-спектрометра путем подачи на каждый коллектор одного ионного луча и последующем определении содержания изотопов в анализируемой пробе по формуле (2).

Недостатком прототипа является то, что способ не учитывает возникающего в приборе эффекта фракционирования изотопного состава анализируемого вещества.

Задачей изобретения является создание более точного способа измерения изотопного состава вещества, например, гексафторида урана с помощью масс-спектрометра с многоколлекторной системой регистрации ионов путем учета эффекта фракционирования изотопов в узлах масс-спектрометра.

Технический результат достигается тем, что в известном способе определения изотопного состава веществ, включающем предварительное определение коэффициентов относительной калибровки усилителей ионного тока многоколлекторного масс-спектрометра, регистрацию ионных токов каждого изотопа на индивидуальном коллекторе и расчет содержания изотопов по формуле (2), предварительно с помощью стандартных образцов определяют для каждого изотопа линейную дискриминационную зависимость, которую затем используют для корректировки значений коэффициентов относительной калибровки УИТ, после чего проводят пересчет содержания изотопов по формуле (2) с использованием скорректированных значений K i.

Данный способ можно реализовать следующим образом. Например, в случае измерения изотопного состава энергетического гексафторида, обогащенного по изотопу уран-235 не более 5% (т.е. когда Сi<<100% (i=234, 235, 236), а Сjспособ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 100% (j=238)), полный дифференциал для атомной доли i-го изотопа, определяемой по формуле (2), будет равен:

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

Выражение (3) показывает, что для энергетического урана погрешность определения содержания урана-234, 235, 236 будет прямо пропорциональна содержанию самого изотопа. При этом коэффициент пропорциональности будет зависеть от точности определения коэффициентов калибровки (dKi,j) и величины эффектов фракционирования в масс-спектрометре, приводящих к возникновению dUi,j.

Из представленного выражения (3) также следует, что существующие в масс-спектрометре эффекты фракционирования (dUi) можно компенсировать путем корректировки коэффициента калибровки K i так, чтобы сумма слагаемых в скобках равнялась нулю.

Нетрудно показать, что поправка коэффициента K i будет равна:

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где Сi - начальное измеренное значение атомной доли i-го изотопа урана, определенное по формуле (2), %;

i - изотоп урана: 234, или 235, или 236;

Ki - начальный коэффициент калибровки канала регистрации i-го изотопа урана, используемый для определения начального значения Сi;

f(C i) - линейная кривая, описывающая эффекты фракционирования i-го изотопа в масс-спектрометре и равная:

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i, способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i, - постоянные величины;

С 235 - начальное измеренное значение атомной доли урана-235, %;

Ci, пасп. - паспортное значение атомной доли i-го изотопа в измеряемом СО.

Коэффициенты линейной зависимости f(C i) находят перед измерением проб ГФУ с помощью двух стандартных образцов из анализа разницы между измеренным и паспортным значениями i-го изотопа в СО (см. выражение (5)). Частота такой калибровки масс-спектрометра зависит от стабильности его работы (сохранения настроек параметров ионно-оптической системы, условий в системе ввода пробы и т.д.).

Линейная зависимость f(C i) определяется величиной эффектов фракционирования (изменением изотопного состава урана) и начальной погрешностью определения коэффициентов калибровки, определенных, например, с помощью постоянного ионного луча. Так как в дальнейшем эта погрешность учитывается при вычислениях, то необходимости точного начального определения коэффициентов калибровки (dKi,j) уже не требуется.

После определения значений способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 Ki для каждого из трех изотопов урана: 234, 235 и 236, проводят пересчет измеренного значения атомной доли изотопа, например, атомную долю урана-235 определяют по формуле:

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

Аналогично рассчитывают значения C' 234 и С'236.

Определение зависимости f(Ci) для урана-234 и урана-236 как функции от содержания урана-235 (С235 ) обусловлено тем, что величина dUi для этих изотопов не зависит от их содержания и вызвана наложением на данные пики изотопов "хвостов" от более интенсивных пиков урана-235 и урана-238.

В случае, когда способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 iспособ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 0, точное содержание урана-234, 236 может быть определено по формуле:

способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428

где Сi - начальное значение атомной доли i-го изотопа урана, определенное по формуле (2), %.

Использование предложенного способа определения изотопного состава гексафторида урана позволило существенно снизить влияние на результаты измерений эффектов фракционирования изотопов в различных узлах масс-спектрометра и проводить измерения изотопного состава ГФУ без необходимости точного определения значений коэффициентов калибровки УИТ.

Расход стандартных образцов при использовании предложенного способа уменьшается, в сравнении с существующими относительными методиками измерений, в 4÷6 раз. При этом отсутствие необходимости подбирать изотопный состав СО близким к изотопному составу пробы позволяет сократить количество используемых СО для аттестации качества ГФУ, обогащенного по урану-235 до 5%, до двух штук, вместо 5-6 СО, используемых в настоящее время при относительных методах анализа.

Осуществление заявляемого способа выполняется следующим образом:

1. Путем последовательной регистрации на каждом коллекторе одного ионного луча постоянной интенсивности определяют коэффициенты калибровки каналов регистрации ионных токов Ki.

2. Определяют параметры дискриминационных кривых для изотопов урана-234, 235, 236. Для этого два СО последовательно вводят в масс-спектрометр и, регистрируя выходные сигналы каждого из изотопов, рассчитывают измеренные значения содержания изотопов по формуле (2). Сравнивая паспортные и измеренные значения атомной доли для каждого из изотопов, определяют коэффициенты кривых способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i и способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i.

3. Напускают в масс-спектрометр пробу ГФУ, регистрируя каждый изотоп урана на индивидуальном коллекторе. По формуле (2) рассчитывают начальные измеренные значения атомных долей изотопов урана в пробе.

4. Определяют поправки к значениям коэффициентов калибровки К i для каждого из изотопов урана: 234, 235 и 236, по формуле (4).

5. Определяют скорректированное значение атомной доли изотопов урана-234, 235, 236 по формуле (6).

Реализация способа возможна на любом масс-спектрометре, предназначенном для анализа коррозионно-активных газов, оборудованном многоколлекторной системой регистрации ионов и системой молекулярного ввода газа в источник ионов масс-спектрометра.

Частота проведения калибровки масс-спектрометра, заключающаяся в предварительном определении с помощью СО зависимостей f(Ci ), зависит от стабильности настройки и работы ионно-оптической системы масс-спектрометра. Как показано ниже, для масс-спектрометра МТИ-350Г, выпускаемом на "Уральском электрохимическом комбинате" (Россия), калибровка может проводиться не чаще, чем один раз за несколько суток работы прибора.

Пример осуществления.

На многоколлекторном масс-спектрометре МТИ-350Г (г.Новоуральск, Россия) проводилось определение изотопного состава государственных стандартных образцов (ГСО) изотопного состава гексафторида урана №№1-5 (паспортные характеристики приведены в таблице 1).

Значения относительных коэффициентов калибровки каналов регистрации ионных токов, предварительно определенные по ионному лучу 238UF5 +, последовательно подаваемому на каждый коллектор, составили: K 234=0,1662; K235=1; K 236=0,1645; K238=9,920. С помощью двух СО №1 и №5 (см. табл.1) были определены параметры дискриминационных кривых fi(Ci), значения которых приведены в табл.2. После чего абсолютным многоколлекторным методом в течение трех суток проводилось последовательное определение изотопного состава трех СО, приведенных в таблице 1 под номерами №№2,3,4, как проб неизвестного состава без осуществления какой-либо дополнительной калибровки и настройки масс-спектрометра.

В таблице 3 приведены результаты измерений атомных долей изотопов урана. Для первого дня измерений указаны атомные доли изотопов урана, определенные по формуле (2); скорректированные значения коэффициентов калибровки Ki в соответствии с формулой (4); атомные доли изотопов урана, определенные по формуле (6); для последующих дней - только окончательный результат измерений. Количество замеров (напусков в масс-спектрометр) каждого СО, по которым рассчитывалось среднее измеренное значение (С измер), составляло 4.

Как показывают результаты измерений, представленные в таблице 3, абсолютная погрешность определения содержания урана-234 и урана 236 не превышает 0,0003%, урана-235 - 0,0009%. При этом на измерение одной пробы (СО) тратится около 10 минут, а расход стандартных образцов урана, в сравнении с относительными методами анализа, снижается в 4÷6 раз.

Реализация данного способа измерений изотопного состава гексафторида урана на многоколлекторном масс-спектрометре возможна только при отсутствии в масс-спектрометре заметного эффекта памяти (изотопного разбавления анализируемой пробы остатками от предыдущих проб или СО), что может быть достигнуто путем использования системы ввода агрессивных газов в масс-спектрометр [6].

Источники информации

1. А.А.Сысоев, В.Б.Артаев, В.В.Кащеев. Изотопная масс-спектрометрия. - М.: Энергоатомиздат, 1993. - 288 с.

2. Дж. Барнард. Современная масс-спектрометрия. - М.: Издательство иностранной литературы. 1957, - 415 с.

3. J.C.Stacey, N.D.Sherrill and others. A Fife-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer. // International Journal of Mass Spectrometry and Ion Physics, 39 (1981), p.167-180.

4. USA Patent №4495413. Process for calibrating ion-current amplifiers in mass spectrometers and mass spectrometer for carrying out the process. Finnigan Mat GmbH/ Germany, 1985.

5. USA Patent №6472659. Method for measuring ionic currents, and a catching device therefore. Finnigan Mat GmbH/ Germany, 2002.

6. Патент РФ №2213957. Система ввода агрессивных газов, например, гексафторида урана, в масс-спектрометр. УЭХК. Приоритет от 04.07.2001.

Таблица 1
№ СОРег. № ГСО, индекс партии Атомная доля изотопов урана в ГСО, %
U-234U-235 U-236U-238
1ГСО 7521-99, 184-00 0,00540±0,000070,71951±0,00029 <0,0000299,2751±0,0003
2ГСО 7523-99, 198-040,00674±0,00009 1,5435±0,00060,00107±0,00008 98,4487±0,0006
3ГСО 7525-99, 190-02 0,02157±0,000132,4289±0,0010 0,02434±0,0001597,5252±0,0010
4ГСО 7530-99, 203-050,03792±0,00013 3,9752±0,00150,00056±0,00004 95,9863±0,0015
5ГСО 7533-99, 204-05 0,03970±0,000145,3797±0,0025 0,00074±0,0000494,5799±0,0026

Таблица 2
Коэффициенты кривых fi(C i)Изотопы урана
U-234U-235 U-236
способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i-0,00002 0,002250,00002
способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 i-0,00045 -0,00249-0,00089

Таблица 3
Изотоп урана  ПараметрНомер СО (см. таб.1)
№2№3 №4
Уран-234 1 деньСизмер 0,007230,02218 0,03865
K234 -способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 K2340,15013 0,160790,16298
Сизмер' 0,006810,021690,03812
Спасп измер'-0,00007 -0,00007-0,00002
2 деньСпасп измер'-0,00009 -0,00012-0,00017
3 деньСпасп измер'-0,00017 -0,00010-0,00007
Уран-2351 день Сизмер1,54247 2,426263,96802
K235-способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 K2351,00036 1,001181,00177
Сизмер' 1,543452,429123,97418
Спасп измер'0,00015 -0,000390,0001
2 деньСпасп измер'-0,00059 -0,000150,00028
3 деньСпасп измер'-0,00072 -0,000170,00036
Уран-2361 день Сизмер0,00184 0,024800,00146
K236-способ определения изотопного состава гексафторида урана с помощью   многоколлекторного масс-спектрометра, патент № 2337428 K2360,09303 0,158930,06654
Сизмер' 0,001250,023960,00083
Спасп измер'-0,00008 -0,00016-0,00003
2 деньСпасп измер'-0,00001 0,00007-0,00004
3 деньСпасп измер'-0,00011 0,00017-0,00004

Класс H01J49/26 масс-спектрометры или разделительные трубки

трубка для измерения подвижности ионов -  патент 2518055 (10.06.2014)
способ определения концентрации ванадия в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой (варианты) -  патент 2466096 (10.11.2012)
способ определения изотопного состава метана -  патент 2461909 (20.09.2012)
статический масс-анализатор ионов -  патент 2456700 (20.07.2012)
способ определения эффекта "дискриминации" изотопного состава вещества в узлах многоколлекторного масс-спектрометра -  патент 2337427 (27.10.2008)
способ масс-спектрометрического анализа различных химических соединений -  патент 2321850 (10.04.2008)
способ масс-спектрометрического анализа твердого вещества -  патент 2315388 (20.01.2008)
блок коллектора спектрометра дрейфовой подвижности ионов -  патент 2293978 (20.02.2007)
спектрометр ионной подвижности -  патент 2293977 (20.02.2007)
поверхностно-ионизационный источник ионов органических соединений -  патент 2293976 (20.02.2007)
Наверх