способ получения гидроксида алюминия псевдобемитной структуры и гамма-оксида алюминия на его основе

Классы МПК:C01F7/44 обезвоживание гидроксида алюминия 
Автор(ы):, , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (RU)
Приоритеты:
подача заявки:
2006-11-13
публикация патента:

Группа изобретений относится к химической технологии и может быть использована в производстве гидроксида алюминия со структурой псевдобемита и гамма-оксида алюминия на его основе, применяемых в производстве катализаторов, носителей и т.д. Способ получения гидроксида алюминия псевдобемитной структуры из гидраргиллита включает гидратацию рентгеноаморфного продукта термической активации гидраргиллита при температуре 10-80°С в жидких растворах неорганических и/или органических веществ при рН, равном 5-10. Соотношение жидкость к твердому составляет 1-10:1. Гамма-оксид алюминия получают из гидроксида алюминия псевдобемитной структуры при температуре 500-800°С. Изобретения позволяют получить дисперсный псевдобемит с высоким его содержанием в конечном продукте, а также дисперсный гамма-оксид алюминия. 2 н. и 5 з.п. ф-лы, 3 табл.

Формула изобретения

1. Способ получения гидроксида алюминия псевдобемитной структуры из гидраргиллита, включающий гидратацию рентгеноаморфного продукта термической активации гидраргиллита, отличающийся тем, что гидратацию проводят при температуре 10-80°С в жидких растворах неорганических и/или органических веществ при рН 5-10.

2. Способ по п.1, отличающийся тем, что соотношение жидкого раствора к рентгеноаморфному продукту термической активации гидраргиллита равно 1-10:1.

3. Способ по пп.1 и 2, отличающийся тем, что гидратацию проводят в течение 2-168 ч и постоянном перемешивании.

4. Способ по п.1, отличающийся тем, что в качестве неорганических и органических веществ применяют растворы неорганических и/или органических кислот, например, азотной, соляной, уксусной, молочной, муравьиной; оснований, например, раствор аммиака; поверхностно-активных веществ, например, растворы полиэтиленоксида, этиленгликоля, глицерина, карбоксиметилцеллюлозы.

5. Способ по п.1, отличающийся тем, что перед гидратацией проводят измельчение ретгеноаморфного продукта термической активации гидраргиллита.

6. Способ по п.1, отличающийся тем, что полученный после гидратации гидроксид алюминия псевдобемитной структуры подвергают сушке при температуре не выше 150°С.

7. Способ получения гамма-оксида алюминия термической обработкой гидроксида алюминия псевдобемитной структуры, отличающийся тем, что используют гидроксид алюминия псевдобемитной структуры, полученный по любому из пп.1-6, и его термическую обработку ведут при температуре 500-800°С.

Описание изобретения к патенту

Изобретение относится к химической технологии и может быть использовано в производстве гидроксида алюминия псевдобемитной структуры и гамма-оксида алюминия на его основе, применяемых в производстве катализаторов, носителей, связующих, наполнителей, поглотителей, других областях химической технологии.

Существуют различные способы получения гидроксида алюминия псевдобемитной структуры.

Известен способ получения гидроксида алюминия псевдобемитной структуры путем его осаждения из водного раствора солей алюминия (нитраты, хлориды, сульфаты) водным раствором осадителя (щелочь) при рНспособ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 6 и температуре осаждения 70°С, величина удельной поверхности которого может изменяться в широких пределах: от 250 до 420 м2/г [Дзисько В.А., Иванова А.С. Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, сер. хим., 1985, N 5, с.110; Сеттерфилд Ч. Практический курс гетерогенного катализа. М.: Мир, 1984, с.112-118]. Основным недостатком способа получения псевдобемита осаждением из растворов является наличие большого количества стоков, которые нужно утилизировать, и большой расход реагентов.

Известен способ получения основных солей алюминия и низкотемпературных форм оксида алюминия [SU 1582538, C01F 7/00, 27.09.1999], основанный на обработке водным раствором кислоты тригидроксида алюминия, предварительно прошедшего стадию термообработки (термоактивации) в газовом потоке при 300-500°С в течение 1-7 с и стадию последующего размола частиц до 5-25 мкм. Процесс ведут при 70-98°С в течение 2-6 ч при отношении Ж:Т=3:10. Получаемый продукт представляет собой аморфную композицию, характеризуемую низким значением удельной поверхности. Кроме того, термическая обработка такого аморфного продукта при 500-600°С приводит к формированию аморфного оксида алюминия, величина удельной поверхности которого также не превышает 50-60 м 2/г.

Наиболее близким является малоотходный способ получения псевдобемита без его переосаждения, основанный на предварительной активации технического тригидроксида алюминия (гидраргиллита). Так, известен способ получения псевдобемита путем механической обработки технического тригидроксида при температурах 85-110°С [SU 1061404, C01F 7/02, 27.09.1999].

Недостатком такого способа приготовления является невысокая величина удельной поверхности продукта, равная 20-50 м2/г, и, кроме того, высокое содержание натрия.

Изобретение решает задачу разработки экологически чистого способа получения высокодисперсного гидроксида алюминия псевдобемитной структуры с высоким его содержанием в конечном продукте из продуктов термической активации технического гидраргиллита путем их обработки водными растворами неорганических и/или органических соединений при нормальных условиях.

Задача решается способом получения гидроксида алюминия псевдобемитной структуры из гидраргиллита, включающим гидратацию рентгеноаморфного продукта термической активации гидраргиллита, которую проводят при температуре 10-80°С в жидких растворах неорганических и/или органических веществ при рН, равном 5-10.

Соотношение жидкого раствора к рентгеноаморфному продукту термической активации гидраргиллита равно 1-10:1, гидратацию проводят в течение 2-168 ч и постоянном перемешивании.

В качестве неорганических и органических веществ применяют растворы неорганических и/или органических кислот, например азотной, соляной, уксусной, молочной, муравьиной; оснований, например раствор аммиака; поверхностно-активных веществ, например растворы полиэтиленоксида, этиленгликоля, глицерина, карбоксиметилцеллюлозы.

Активацию гидраргиллита проводят, например, при тонкослойном его распределении под действием центробежных сил на вращающейся и нагретой до температуры 330-600°С поверхности и времени контакта 0.1-2 с, с получением псевдоаморфной структуры продукта терморазложения гидраргиллита, или путем пропускания гидраргиллита через кипящий слой частиц твердого теплоносителя при времени контакта 0.05-0.5 с [SU 517564, C01F 7/30, 33.12.86], или путем разложения гидраргиллита в паровоздушной смеси в реакторе термохимической активации в течение 0.01-1 с [SU 1129861, C01F 7/44, 27.09.99].

Для увеличения скорости образования псевдобемита и получения высокодисперсного однофазного продукта гидратации псевдоаморфную структуру продукта терморазложения гидраргиллита разрушают механическими (путем измельчения, например пропусканием порошка через дезинтегратор марки ДЭЗИ) или химическими (путем добавления во время гидратации органических добавок, например ПАВ) методами.

Полученный после гидратации гидроксид алюминия псевдобемитной структуры подвергают сушке при температуре не выше 150°С.

Гидроксид алюминия псевдобемитной структуры содержит не менее 60 мас.% псевдобемита. Получаемый гидроксид алюминия псевдобемитной структуры характеризуется величиной удельной поверхности, изменяющейся в пределах от 185 до 350 м 2/г.

Гидратация, осуществляемая при рН менее 5, приводит к образованию основных солей алюминия. Гидратация при рН более 10 приводит к образованию фаз байерита и гидраргиллита. Соотношение Ж:Т=1-10:1 выбрано по технологическим соображениям для обеспечения постоянного перемешивания. При температуре ниже 10°С продукты гидратации не фиксируются за указанное время. Увеличение температуры выше 80°С или времени гидратации выше 168 ч приводит к образованию байерита, гидраргиллита, окристаллизованного бемита или основных солей алюминия в зависимости от рН среды. Время гидратации менее 5 ч не приводит к образованию 60% содержания основного продукта. Таким образом, выбранные условия гидратации позволяют получать продукт необходимого качества.

Изобретение также решает задачу получения гамма-оксида алюминия способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3 с высокой величиной удельной поверхности 380-400 м2 /г.

Известен способ получения гамма-оксида алюминия, включающий термическую обработку гидроксида алюминия псевдобемитной структуры [SU 1218618, C01F 7/02, 27.08.1999].

Задача решается путем получения гамма-оксида алюминия термической обработкой при температуре 500-800°С гидроксида алюминия псевдобемитной структуры, полученного как описано выше.

При температуре менее 500°С гидроксид алюминия псевдобемитной структуры не разлагается. При температуре выше 800°С образуются другие формы оксида алюминия.

Оксид алюминия, получаемый из синтезированного псевдобемита, представляет собой способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3 с небольшой примесью способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3 (следы); величина удельной поверхности которого составляет 380-400 м 2/г; содержание оксида натрия не превышает 0,015%.

Существенными отличительными признаками предлагаемого способа получения гидроксида алюминия псевдобемитной структуры являются:

1) мягкие условия гидратации,

2) величина удельной поверхности получаемых гидроксидов и гамма-оксида алюминия составляет соответственно ˜185-350 и ˜380-400 м2/г.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Центробежно-термическую активацию гидраргиллита осуществляют в установке, которая представляет собой камеру, внутри которой вращается твердый теплоноситель - профилированная специальным образом тарель. Скорость вращения может изменяться и определяет время контакта. Под тарелью расположены нагревательные элементы. Температуру теплоносителя регулируют тремя термопарами. Технический гидрат глинозема (гидраргиллит) из бункера-дозатора подается на разогретую тарель, резко нагревается и под действием центробежной силы двигается по поверхности теплоносителя к стенкам камеры, снабженным рубашкой охлаждения. При ударе разогретых частиц продукта активации о холодные стенки камеры происходит их резкое охлаждение (закалка). Камера снабжена отверстиями для выхода пара и приемным бункером для порошка.

40 кг технического гидрата глинозема (гидраргиллита) с исходной влажностью 4.5% и температурой 25°С подают со скоростью 15 кг/ч на нагретую до 350-380°С тарель, время контакта 1.5 с. Образующийся продукт имеет удельную поверхность 160 м2 /г. Условия терморазложения и характеристики образующегося продукта приведены в таблице 1, пример 1. Характеристики продуктов центробежно-термичекой активации, полученных при других расходах и температуре, продуктов термохимической активации (ТХА) и продуктов термической активации (ПТ) представлены в таблице 1.

500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН 5.5. Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отфильтровывают и отмывают от кислоты дистиллированной водой до рН 6.5-7. Отмытый осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2, пример 1. Содержание псевдобемита по данным фазового анализа (РФА) совпадает с содержанием псевдобемита по данным термического анализа (ТА).

Пример 2. Аналогичен примеру 1, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 3. Аналогичен примеру 1, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 4. Аналогичен примеру 1, в емкость для гидратации приливают раствор азотной кислоты для создания рН 5.5. Время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 5. Аналогичен примеру 1, в емкость для гидратации приливают раствор азотной кислоты для создания рН 5.5. Время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 6. Аналогичен примеру 1, в емкость для гидратации приливают раствор азотной кислоты для создания рН 5.5. Время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 7. Аналогичен примеру 1, в емкость для гидратации приливают раствор соляной кислоты для создания рН 5.5. Время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 8. Аналогичен примеру 1, в емкость для гидратации приливают раствор соляной кислоты для создания рН 5.5. Время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 9. Аналогичен примеру 1, в емкость для гидратации приливают раствор соляной кислоты для создания рН 5.5. Время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 10. Аналогичен примеру 1, в емкость для гидратации приливают раствор молочной кислоты для создания рН 5.5. Время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 11. Аналогичен примеру 1, в емкость для гидратации приливают раствор молочной кислоты для создания рН 5.5. Время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 12. Аналогичен примеру 1, в емкость для гидратации приливают раствор молочной кислоты для создания рН 5.5. Время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 13. Аналогичен примеру 1, в емкость для гидратации приливают раствор муравьиной кислоты для создания рН 5.5. Время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 14. Аналогичен примеру 1, в емкость для гидратации приливают раствор муравьиной кислоты для создания рН 5.5. Время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 15. Аналогичен примеру 1, в емкость для гидратации приливают раствор муравьиной кислоты для создания рН 5.5. Время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 16. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН 5.5 и раствор ПАВ (этиленгликоль). Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отфильтровывают и отмывают от кислоты дистиллированной водой до рН 6.5-7. Отмытый осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 17. Аналогичен примеру 16, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 18. Аналогичен примеру 16, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 19. Аналогичен примеру 16, в емкость для гидратации приливают раствор ПАВ (глицерин), время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 20. Аналогичен примеру 19, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 21. Аналогичен примеру 19, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 22. Аналогичен примеру 16, в емкость для гидратации приливают раствор ПАВ (полиэтиленоксид), время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 23. Аналогичен примеру 22, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 24. Аналогичен примеру 22, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 25. Аналогичен примеру 22, в емкость для гидратации приливают раствор ПАВ (карбоксиметилцеллюлоза), время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 26. Аналогичен примеру 25, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 27. Аналогичен примеру 25, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 28. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 29. Аналогичен примеру 28, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 30. Аналогичен примеру 28, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 31. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 25% раствор аммиака для создания рН 10. Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 32. Аналогичен примеру 31, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 33. Аналогичен примеру 31, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 34. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают раствор ПАВ (этиленгликоль) и 25% раствор аммиака для создания рН 10. Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 35. Аналогичен примеру 34, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 36. Аналогичен примеру 34, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 37. Аналогичен примеру 34, в емкость для гидратации приливают раствор ПАВ (глицерин), время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 38. Аналогичен примеру 37, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 39. Аналогичен примеру 37, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 40. Аналогичен примеру 34, в емкость для гидратации приливают раствор ПАВ (полиэтиленоксид), время гидратации 5 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 41. Аналогичен примеру 40, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 42. Аналогичен примеру 40, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 43. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН<5. Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отмывают от кислоты дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 44. Аналогичен примеру 43, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 45. Аналогичен примеру 43, в емкость для гидратации приливают раствор азотной кислоты для создания рН<5. Характеристики продукта гидратации представлены в таблице 2.

Пример 46. Аналогичен примеру 45, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 47. Аналогичен примеру 43, в емкость для гидратации приливают раствор соляной кислоты для создания рН<5. Характеристики продукта гидратации представлены в таблице 2.

Пример 48. Аналогичен примеру 47, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 49. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 25% раствор аммиака для создания рН>11. Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 50. Аналогичен примеру 49, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 51. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН<5 и раствор ПАВ (этиленгликоль). Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 52. Аналогичен примеру 51, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 53. Аналогичен примеру 51, в емкость для гидратации приливают раствор ПАВ (глицерин). Характеристики продукта гидратации представлены в таблице 2.

Пример 54. Аналогичен примеру 53, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 55. Аналогичен примеру 53, в емкость для гидратации приливают раствор ПАВ (полиэтиленоксид). Характеристики продукта гидратации представлены в таблице 2.

Пример 56. Аналогичен примеру 55, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 57. 500 г продукта центробежно-термической активации гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 25% раствор аммиака для создания рН>11 и раствор ПАВ. Гидратацию ведут при постоянном перемешивании в течение 5 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2, пример 22.

Пример 58. Аналогичен примеру 57, время гидратации 24 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 59. 500 г продукта термохимической активации гидраргиллита (ТХА) помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН 5.5. Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отфильтровывают и отмывают от кислоты дистиллированной водой до рН 6.5-7. Отмытый осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2. Содержание псевдобемита по данным фазового анализа (РФА) совпадает с содержанием псевдобемита по данным термического анализа (ТА).

Пример 60. Аналогичен примеру 59, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 61. Аналогичен примеру 59, в емкость для гидратации приливают раствор азотной кислоты для создания рН 5.5. Характеристики продукта гидратации представлены в таблице 2.

Пример 62. Аналогичен примеру 61, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 63. 500 г продукта ТХА гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН 5.5 и раствор ПАВ (этиленгликоль). Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отфильтровывают и отмывают от кислоты дистиллированной водой до рН 6.5-7. Отмытый осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 64. Аналогичен примеру 63, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 65. Аналогичен примеру 63, в емкость для гидратации приливают раствор ПАВ (полиэтиленоксид). Характеристики продукта гидратации представлены в таблице 2.

Пример 66. Аналогичен примеру 65, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 67. 500 г продукта ТХА гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 25% раствор аммиака для создания рН 10. Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 68. Аналогичен примеру 67, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 69. 500 г продукта ТХА гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают раствор ПАВ (этиленгликоль) и 25% раствор аммиака для создания рН 10. Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 70. Аналогичен примеру 69, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 71. Аналогичен примеру 69, в емкость для гидратации приливают раствор ПАВ (полиэтиленоксид). Характеристики продукта гидратации представлены в таблице 2.

Пример 72. Аналогичен примеру 71, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 73. 500 г продукта термической активации (ПТ) гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН 5.5. Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отфильтровывают и отмывают от кислоты дистиллированной водой до рН 6.5-7. Отмытый осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2, пример 32. Содержание псевдобемита по данным фазового анализа (РФА) совпадает с содержанием псевдобемита по данным термического анализа (ТА).

Пример 74. Аналогичен примеру 73, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 75. Аналогичен примеру 73, в емкость для гидратации приливают раствор азотной кислоты для создания рН 5.5. Характеристики продукта гидратации представлены в таблице 2.

Пример 76. Аналогичен примеру 75, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 77. 500 г продукта ПТ гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 70% раствор уксусной кислоты для создания рН 5.5 и раствор ПАВ (этиленгликоль). Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отфильтровывают и отмывают от кислоты дистиллированной водой до рН 6.5-7. Отмытый осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 78. Аналогичен примеру 77, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 79. Аналогичен примеру 77, в емкость для гидратации приливают раствор ПАВ (полиэтиленоксид). Характеристики продукта гидратации представлены в таблице 2.

Пример 80. Аналогичен примеру 79, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 81. 500 г продукта ПТ гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают 25% раствор аммиака для создания рН 10. Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 82. Аналогичен примеру 81, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 83. 500 г продукта ПТ гидраргиллита помещают в емкость, снабженную мешалкой, приливают 1,5 л дистиллированной воды. Затем в емкость приливают раствор ПАВ (этиленгликоль) и 25% раствор аммиака для создания рН 10. Гидратацию ведут при постоянном перемешивании в течение 24 ч. Полученную суспензию отмывают от аммиака дистиллированной водой до рН 7-7.5 и отфильтровывают. Осадок сушат при 110°С в течение 24 ч и измельчают. Характеристики продукта гидратации представлены в таблице 2.

Пример 84. Аналогичен примеру 83, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Пример 85. Аналогичен примеру 83, в емкость для гидратации приливают раствор ПАВ (полиэтиленоксид). Характеристики продукта гидратации представлены в таблице 2.

Пример 86. Аналогичен примеру 85, время гидратации 168 ч. Характеристики продукта гидратации представлены в таблице 2.

Примеры 87-101. Характеристики образцов, полученных при гидратации продуктов центробежно-термичекой активации, произведенных при других расходах и температуре, представлены в таблице 2.

Примеры 102-122 иллюстрируют получение активного оксида алюминия способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3.

Пример 102. Гидроксид алюминия, полученный согласно примеру 2, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 103. Гидроксид алюминия, полученный согласно примеру 5, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 104. Гидроксид алюминия, полученный согласно примеру 8, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 105. Гидроксид алюминия, полученный согласно примеру 11, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 106. Гидроксид алюминия, полученный согласно примеру 14, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 107. Гидроксид алюминия, полученный согласно примеру 17, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 108. Гидроксид алюминия, полученный согласно примеру 20, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 109. Гидроксид алюминия, полученный согласно примеру 23, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 110. Гидроксид алюминия, полученный согласно примеру 26, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 111. Гидроксид алюминия, полученный согласно примеру 29, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 112. Гидроксид алюминия, полученный согласно примеру 32, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 113. Гидроксид алюминия, полученный согласно примеру 44, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 114. Гидроксид алюминия, полученный согласно примеру 47, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 115. Гидроксид алюминия, полученный согласно примеру 50, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 116. Гидроксид алюминия, полученный согласно примеру 52, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 117. Гидроксид алюминия, полученный согласно примеру 56, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 118. Гидроксид алюминия, полученный согласно примеру 59, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 119. Гидроксид алюминия, полученный согласно примеру 61, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 120. Гидроксид алюминия, полученный согласно примеру 63, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 121. Гидроксид алюминия, полученный согласно примеру 73, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Пример 122. Гидроксид алюминия, полученный согласно примеру 77, прокаливают при 550°С в токе осушенного воздуха в течение 4 ч. Характеристики получаемого оксида алюминия приведены в таблице 3.

Как видно из приведенных примеров и таблиц, данный способ приготовления позволяет без переосаждения, при малом расходе реагентов и меньших энергетических затратах, достаточно быстро получать псевдобемит и оксид алюминия с развитой величиной удельной поверхности, с различной дисперсностью. Это открывает новые возможности на пути дальнейшего использования псевдобемита для приготовления связующих, а также носителей и катализаторов на основе гамма-оксида алюминия, являющегося продуктом терморазложения псевдобемита. Кроме того, предлагаемый способ получения гидроксида и оксида алюминия является экологически безопасным.

Таблица 1

Характеристики продуктов терморазложения гидраргиллита
N п/пОбразецТемпература обработки, °СПроизводительность, кг/ч Sуд, М 2Фазовый состав, мас.%
       ППП1000 Ам. фазаГидраргиллит БемитПсевдобемит
55ЦТА 350-38015210 22.7563.9 19.516.60
56ЦТА 570-58010143 12.078.3 8.7130
57ЦТА 57514.6132 7.5770 13.59.6
58 ЦТА530 3.91258.5 81.92.110 6
59ЦТА 470-4804.6 1749.577.5 3.611.77.2
60ЦТА 38514.6125 13.7564.13.7 21.710.5
61ТХА 350-380 112 1262.3 13.71014
62ПТ 500 120 11805 105

способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457

Таблица 3.

Характеристики получаемых оксидов алюминия.
NN П/пИсходный гидроксид алюминия Фазовый состав оксида алюминияS уд., м2
  Фаза а, ÅD, Å  
102 По примеру 2способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91140 380
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
103 По примеру 5способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91135 400
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
104 По примеру 8способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91140 390
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
105 По примеру 11способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91140 380
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
106 По примеру 14способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91140 385
   л.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
107 По примеру 17способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91135 400
   л.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
108 По примеру 20способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91140 380
   л.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
109 По примеру 23способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91136 380
   л.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
110 По примеру 26способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91140 390
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
111 По примеру 29-Al2 О3,7,931 42320
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
112 По примеру 32-Al2 О3,7,931 46300
   способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
113 По примеру 44способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91140 350
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
114 По примеру 47способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91137 330
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
115 По примеру 50-Al2 О3,7,931 42300
   способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
116 По примеру 52способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91136 380
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
117 По примеру 56способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91135 320
   сл-способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
118 По примеру 59способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91135 390
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
119 По примеру 61способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91137 385
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
120 По примеру 63способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3,, 7,91141 400
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
121 По примеру 73способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91136 380
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
122 По примеру 77способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3, 7,91135 385
   сл.способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3     
а - параметр элементарной ячейки способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 - или способ получения гидроксида алюминия псевдобемитной структуры   и гамма-оксида алюминия на его основе, патент № 2335457 -Al2О3

D - область когерентного рассеяния (ОКР), характеризующая размер кристаллитов.

Класс C01F7/44 обезвоживание гидроксида алюминия 

способ получения корунда высокой чистоты -  патент 2519450 (10.06.2014)
катализатор селективного гидрирования и способ его получения -  патент 2490060 (20.08.2013)
способ получения малощелочного глинозема с высоким содержанием -модификаций al2o3 -  патент 2462417 (27.09.2012)
осушитель и способ его приготовления -  патент 2448905 (27.04.2012)
порошок -оксида алюминия -  патент 2441841 (10.02.2012)
абразивный порошковый материал и абразивная суспензия для избирательного полирования полупроводниковой подложки и способ полирования -  патент 2401856 (20.10.2010)
порошкообразный альфа-оксид алюминия, способ его получения и изделие из него -  патент 2386589 (20.04.2010)
порошковый материал из оксида алюминия (варианты) и способ его получения -  патент 2348641 (10.03.2009)
способ получения бемитного порошкового материала -  патент 2342321 (27.12.2008)
нанопористые сверхмелкие порошки из альфа оксида алюминия и золь-гель, способ их приготовления -  патент 2302374 (10.07.2007)
Наверх