способ микроволновой обработки водонефтяной эмульсии, транспортируемой по трубопроводу, и устройство для его осуществления

Классы МПК:F17D1/16 облегчение перемещения жидкостей или воздействие на перемещение вязких продуктов изменением их вязкости
B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (RU),
Общество с ограниченной ответственностью "Научно производственный центр "МикроТех" (RU)
Приоритеты:
подача заявки:
2007-03-09
публикация патента:

Изобретение относится к области технологии подготовки товарной нефти и может быть использовано на производствах нефтеперерабатывающей и нефтедобывающей промышленности для создания аппаратов сверхвысокочастотной (СВЧ) обработки водонефтяных смесей. Обеспечивает повышение качества разделения водонефтяной эмульсии путем увеличения числа и интенсивности соприкосновения между собой капель воды в потоке водонефтяной эмульсии, находящейся под воздействием СВЧ-энергии в межтрубной зоне, образованной на участке трубопровода поверхностью направляющей структуры и стенками самого трубопровода, а также снижение затрат электромагнитной энергии СВЧ, подаваемой на вход узла ввода энергии СВЧ открытой направляющей структуры. Способ заключается в формировании распределения энергии потерь СВЧ от источника СВЧ-энергии в потоке водонефтяной эмульсии, используя процесс затухания внешнего поля электромагнитной волны открытой направляющей структуры, характеризуемой в водонефтяной эмульсии, транспортируемой по трубопроводу, выбранным нормированным распределением внешнего электромагнитного поля вдоль направляющей структуры, посредством пропускания потока водонефтяной эмульсии в межтрубной зоне через структуру из элементов заданного вида, выполненных из диэлектрических материалов и установленных в межтрубной зоне вдоль открытой направляющей структуры по направлению потока водонефтяной эмульсии, а требуемую минимально допустимую длительность воздействия электромагнитной энергии на водонефтяную эмульсию устанавливают путем изменения расхода Q водонефтяной эмульсии в потоке по трубопроводу в пределах 0<Q<Q max=(Sт-Sл)L/t min, где Q - величина расхода водонефтяной эмульсии в трубопроводе, Qmax - максимальная величина расхода водонефтяной эмульсии, L - длина открытой распределенной направляющей структуры в трубопроводе, tmin - минимально допустимая длительность воздействия электромагнитной энергии на водонефтяную эмульсию, Sл - площадь поперечного сечения открытой распределенной направляющей структуры, S т - площадь поперечного сечения трубопровода. В устройстве микроволновой обработки потока водонефтяной эмульсии, транспортируемой по трубопроводу, содержащем источник СВЧ-энергии, узел ввода энергии СВЧ в трубопровод, выполненный в виде открытой направляющей структуры длиной L в межтрубной зоне трубопровода вдоль открытой направляющей структуры длиной L, взятой в соответствии с выражением L=(tminQmax)/(S т-Sл), установлена структура из элементов заданного вида, выполненных из диэлектрических материалов и ориентированных вдоль оси открытой направляющей структуры, а в трубопроводе со стороны входа в межтрубную зону установлена задвижка с площадью сечения проходного отверстия S3, изменяющегося в пределах 0<S3<S т. 2 н.п. ф-лы, 4 ил. способ микроволновой обработки водонефтяной эмульсии, транспортируемой   по трубопроводу, и устройство для его осуществления, патент № 2333418

способ микроволновой обработки водонефтяной эмульсии, транспортируемой   по трубопроводу, и устройство для его осуществления, патент № 2333418 способ микроволновой обработки водонефтяной эмульсии, транспортируемой   по трубопроводу, и устройство для его осуществления, патент № 2333418 способ микроволновой обработки водонефтяной эмульсии, транспортируемой   по трубопроводу, и устройство для его осуществления, патент № 2333418 способ микроволновой обработки водонефтяной эмульсии, транспортируемой   по трубопроводу, и устройство для его осуществления, патент № 2333418

Формула изобретения

1. Способ микроволновой обработки водонефтяной эмульсии, транспортируемой по трубопроводу, заключающейся в формировании распределения энергии потерь СВЧ от источника СВЧ-энергии в потоке водонефтяной эмульсии с расходом Q в трубопроводе с площадью поперечного сечения S т, протекающей вдоль открытой направляющей структуры длиной L с площадью поперечного сечения Sл, размещенной в трубопроводе вдоль его оси и образующей в нем межтрубную зону длиной L с площадью поперечного сечения (Sт -Sл), используя процесс затухания внешнего поля электромагнитной волны открытой направляющей структуры, характеризуемой в водонефтяной эмульсии, транспортируемой по трубопроводу, выбранным нормированным распределением внешнего электромагнитного поля вдоль направляющей структуры, отличающийся тем, что поток водонефтяной эмульсии в межтрубной зоне пропускают через структуру из элементов заданного вида, выполненных из диэлектрических материалов и установленных в межтрубной зоне вдоль открытой направляющей структуры по направлению потока водонефтяной эмульсии, а требуемую минимально допустимую длительность воздействия электромагнитной энергии на водонефтяную эмульсию устанавливают путем изменения расхода Q водонефтяной эмульсии в потоке по трубопроводу в пределах 0<Q<Qmax=(Sт -Sл)L/tmin, где Q - величина расхода водонефтяной эмульсии в трубопроводе, Q max - максимальная величина расхода водонефтяной эмульсии, L - длина открытой распределенной направляющей структуры в трубопроводе, tmin - минимально допустимая длительность воздействия электромагнитной энергии на водонефтяную эмульсию, Sл - площадь поперечного сечения открытой распределенной направляющей структуры, Sт - площадь поперечного сечения трубопровода.

2. Устройство микроволновой обработки потока водонефтяной эмульсии, транспортируемой по трубопроводу, содержащее источник СВЧ-энергии, узел ввода энергии СВЧ в трубопровод, выполненный в виде открытой направляющей структуры длиной L и с площадью поперечного сечения S л, расположенной в трубопроводе с площадью поперечного сечения Sт и образующей с ним межтрубную зону длиной L, отличающееся тем, что в межтрубной зоне трубопровода вдоль открытой направляющей структуры длиной L, взятой в соответствии с выражением L=(tminQmax )/(Sт-Sл), установлена структура из элементов заданного вида, выполненных из диэлектрических материалов и ориентированных вдоль оси открытой направляющей структуры, а в трубопроводе со стороны входа в межтрубную зону установлена задвижка с площадью сечения проходного отверстия Sз, изменяющегося в пределах 0<S з<Sт,

где Q - величина расхода водонефтяной эмульсии в трубопроводе, Qmax - максимальная величина расхода водонефтяной эмульсии, L - длина открытой распределенной направляющей структуры в трубопроводе, t - длительность воздействия электромагнитной энергии на ВНЭ в трубопроводе, tmin - минимальная длительность воздействия электромагнитной энергии на водонефтяной эмульсии в трубопроводе, Sл - площадь поперечного сечения открытой распределенной направляющей структуры, S т - площадь поперечного сечения трубопровода, S з - площадь поперечного сечения задвижки.

Описание изобретения к патенту

Изобретение относится к области технологии подготовки товарной нефти и может быть использовано на производствах нефтеперерабатывающей и нефтедобывающей промышленности для создания аппаратов сверхвысокочастотной (СВЧ) обработки водонефтяных смесей.

Известны способы и устройства СВЧ-обработки водонефтяной эмульсии, см., например, патент РФ №2196227, МПК 7 Е21В 43/34, опубликованный 10.01.2003, Бюл. №1. Устройство разделения водогазонефтяной смеси. Устройство состоит из трубопровода водонефтяной эмульсии, в который подается энергия СВЧ от системы дискретных излучателей. Микроволновая обработка в этих устройствах производится дискретными излучателями электромагнитной энергии. Недостатком способа, реализуемого этими устройствами, является то, что в них формируют воздействие энергии СВЧ с поверхности обрабатываемой среды и в результате из-за наличия значительных потерь в этой среде электромагнитному воздействию подвергаются только наружные слои, т.е. имеет место большая неравномерность микроволновой обработки водонефтяной эмульсии.

Прототипом изобретения является Патент РФ №2234824. Приоритет 03.03.2003 г. Опубликован 20.08.04. Бюл. №23 «Способ микроволновой обработки жидкой или сыпучей среды и устройство для его осуществления». Воробьев Н.Г., Аюпов Т.А.

Способ заключается в формировании требуемого распределения интенсивности воздействия электромагнитной энергии СВЧ на обрабатываемую в трубопроводе жидкую или сыпучую среду с потерями, используя процесс затухания внешнего поля электромагнитной волны, которую возбуждают в отрезке открытой нерегулярной линии передачи, помещенной в обрабатываемую жидкую или сыпучую среду и характеризуемой в этой среде выбранным нормированным распределением энергии потерь электромагнитного поля, изменяющимся вдоль линии по закону монотонно возрастающей ограниченной непрерывной функции f(z), принимающей значения от нуля до единицы.

Устройство, реализующее способ, содержит: узел ввода энергии СВЧ, выполненный в виде нерегулярной открытой линии передачи выбранного типа, характеризующейся в обрабатываемой жидкой или сыпучей среде, выбранным нормированным распределением энергии потерь электромагнитного поля вдоль линии, изменяющегося по закону монотонно возрастающей ограниченной непрерывной функции, например вида способ микроволновой обработки водонефтяной эмульсии, транспортируемой   по трубопроводу, и устройство для его осуществления, патент № 2333418 , принимающей значения от нуля до единицы.

Данный способ и устройство обеспечивают формирование в трубопроводе режима микроволновой обработки, например, для водонефтяной эмульсии, но процесс сепарации эмульсии в отстойных резервуарах после такой обработки протекает достаточно медленно и неполно. Это происходит потому, что отдельные капли воды в эмульсии, протекающие с эмульсией через межтрубную зону, образованную на участке трубопровода поверхностью направляющей структуры и стенками трубопровода, после СВЧ-обработки остаются разрозненные и, не соприкасаясь друг с другом, долго сохраняются в нефти, обретая исходное состояние эмульсии. Улучшить процесс разделения эмульсии в такой ситуации можно путем увеличения длины трубопровода с направляющей структурой, что приведет к увеличению числа соприкосновения капель воды в эмульсии в зоне воздействия поля СВЧ и их слиянию. Однако из-за необходимости использования открытой направляющей структуры большой протяженности, чтобы обеспечить условия для слияния разрозненных капель воды в нефти, процесс микроволновой обработки требует повышенных затрат СВЧ-энергии из-за необходимости обеспечения повышенной длительности MB воздействия на поток водонефтяной эмульсии и повышения мощности сигнала на входе направляющей структуры вследствие увеличения ее длины.

Решаемая техническая задача предлагаемого изобретения заключается в повышении качества разделения водонефтяной эмульсии путем увеличения числа и интенсивности соприкосновения между собой капель воды в потоке водонефтяной эмульсии, находящейся под воздействием СВЧ-энергии в межтрубной зоне, образованной на участке трубопровода поверхностью направляющей структуры и стенками самого трубопровода. Снижения затрат электромагнитной энергии СВЧ, подаваемой на вход узла ввода энергии СВЧ открытой направляющей структуры, необходимой для подготовки водонефтяной эмульсии к сепарации в отстойных резервуарах. Уменьшение длины открытой направляющей структуры в трубопроводе и при заданной длительности MB-воздействия t на водонефтяную эмульсию в потоке по межтрубной зоне в трубопроводе.

Техническая задача в способе микроволновой обработки водонефтяной эмульсии, транспортируемой по трубопроводу, заключающемся в формировании распределения энергии потерь СВЧ от источника СВЧ-энергии в потоке водонефтяной эмульсии с расходом Q в трубопроводе с площадью поперечного сечения S т, протекающей вдоль открытой направляющей структуры длиной L с площадью поперечного сечения Sл, размещенной в трубопроводе вдоль его оси и образующей в нем межтрубную зону длиной L с площадью поперечного сечения (Sт -Sл), используя процесс затухания внешнего поля электромагнитной волны открытой направляющей структуры, характеризуемой в водонефтяной эмульсии, транспортируемой по трубопроводу, выбранным нормированным распределением внешнего электромагнитного поля вдоль направляющей структуры, достигается тем, что поток водонефтяной эмульсии в межтрубной зоне пропускают через структуру из элементов заданного вида, выполненных из диэлектрических материалов и установленных в межтрубной зоне вдоль открытой направляющей структуры по направлению потока водонефтяной эмульсии, а требуемую минимально допустимую длительность воздействия электромагнитной энергии на водонефтяную эмульсию устанавливают путем изменения расхода Q водонефтяной эмульсии в потоке по трубопроводу в пределах 0<Qспособ микроволновой обработки водонефтяной эмульсии, транспортируемой   по трубопроводу, и устройство для его осуществления, патент № 2333418 Qmax=(Sт-S л)L/tmin, где Q - величина расхода водонефтяной эмульсии в трубопроводе, Qmax - максимальная величина расхода водонефтяной эмульсии, L - длина открытой распределенной направляющей структуры в трубопроводе, tmin - минимально допустимая длительность воздействия электромагнитной энергии на водонефтяную эмульсию, Sл - площадь поперечного сечения открытой распределенной направляющей структуры, Sт - площадь поперечного сечения трубопровода.

Техническая задача в устройстве микроволновой обработки потока водонефтяной эмульсии, транспортируемой по трубопроводу, содержащем источник СВЧ-энергии, узел ввода энергии СВЧ в трубопровод, выполненный в виде открытой направляющей структуры длиной L и с площадью поперечного сечения Sл, расположенной в трубопроводе с площадью поперечного сечения S т и образующей с ним межтрубную зону длиной L, достигается тем, что в межтрубной зоне трубопровода вдоль открытой направляющей структуры длиной L, взятой в соответствии с выражением L=(t minQmax)/(Sт -Sл), установлена структура из элементов заданного вида, выполненных из диэлектрических материалов и ориентированных вдоль оси открытой направляющей структуры, а в трубопроводе со стороны входа в межтрубную зону установлена задвижка с площадью сечения проходного отверстия Sз, изменяющегося в пределах 0<Sз<S т,

где Q - величина расхода водонефтяной эмульсии в трубопроводе, Qmax - максимальная величина расхода водонефтяной эмульсии, L - длина открытой распределенной направляющей структуры в трубопроводе, t - длительность воздействия электромагнитной энергии на ВНЭ в трубопроводе, t min - минимальная длительность воздействия электромагнитной энергии на водонефтяной эмульсии в трубопроводе, S л - площадь поперечного сечения открытой распределенной направляющей структуры, Sт - площадь поперечного сечения трубопровода, Sз - площадь поперечного сечения задвижки.

В качестве структуры из элементов могут быть использованы, например, структуры из элементов, выполненные из диэлектрических материалов: в виде пластин, ребристых структур, стержней, волокон, сеток и т.д., расположенных в электромагнитном поле открытой направляющей структуры в межтрубной зоне в потоке водонефтяной эмульсии, и ориентированные по направлению этого потока.

На фигуре 1 приведена схема устройства для осуществления способа.

На фигуре 2 показана структура из элементов в виде радиальных диэлектрических пластин, расположенных в межтрубной зоне.

На фигуре 3 показана структура из элементов в виде сетки, коаксиально расположенной в межтрубной зоне.

Схема устройства, иллюстрирующая осуществление способа микроволновой обработки водонефтяной эмульсии, транспортируемой по трубопроводу, по фигуре 1 содержит: источник СВЧ-энергии 1, узел ввода СВЧ-энергии, выполненный в виде открытой направляющей структуры 2, например, коаксиального типа, длиной L, расположенной внутри трубопровода 3, образующей с ним на участке длиной L межтрубную зону 4, образованную открытой направляющей структурой 2 и трубопроводом 3, через которую протекает поток водонефтяной эмульсии 5. Заданная длина L, определяемая по формуле, направляющей структуры 2 определяется максимальной величиной расхода водонефтяной эмульсии в потоке Q max, при заданной минимальной длительности микроволнового воздействия tmin и площади поперечного сечения межтрубного участка трубопровода Sмт =(Sт-Sл). Минимальная длительность микроволнового воздействия tmin определяется типом водонефтяной эмульсии, ее температурой и рядом других физических факторов (см., например, Анфиногентов В.И. Численное моделирование сверхвысокочастотного электромагнитного нагрева несжимаемой вязкой жидкости, движущейся в цилиндрической трубе. Электромагнитные волны и электронные системы. Т.11, №2-3, 2006. - С.3-9).

Так, например, для длительности обработки tmin=10 мин, для расхода водонефтяной эмульсии Qmax=100 л/мин в трубопроводе с площадью поперечного сечения в межтрубной зоне SМТ =1250 см2 требуемая длина направляющей структуры составит 8 м. В трубопроводе 3 перед межтрубной зоной 4 установлена задвижка 6, с помощью которой обеспечивается регулировка расхода в потоке водонефтяной эмульсии по трубопроводу.

В межтрубной зоне 4 вдоль поверхности открытой направляющей структуры 2 установлена структура из элементов 7, выбранных, например, из числа приведенных на фиг.2, 3 и 4, ориентированных вдоль оси трубопровода 3. Открытая направляющая структура 2 одним концом соединена с источником энергии СВЧ 1 посредством тракта СВЧ 8. Трубопровод 3 соединен с накопительной емкостью 9, где происходит накопление расслоившейся воды и нефти. Структура из элементов разделяет поток водонефтяной эмульсии в межтрубной зоне на отдельные каналы, ориентированные вдоль оси трубопровода, увеличивает поверхность контакта потока ВНЭ со стенками структуры из элементов. Требование к этой структуре из элементов, например спирали 10 (фиг.2), радиальных пластин 11 (фиг.3), сетки 12 (фиг.4) и т.д., выбирают из следующих соображений: структура из элементов не должна вызывать сильное возмущение потока, т.е. должна быть обтекаемой. Например, может быть выполнена в виде спирали, сетки или пластин из материалов круглого или плоского обтекаемого профиля. В противном случае сильное возмущение потока может привести к дроблению водяных глобул в эмульсии и, соответственно, к ухудшению процесса разделения водонефтяной эмульсии. В зависимости от вязкости эмульсии меняется плотность размещения элементов в структуре, например, с увеличением вязкости уменьшается требуемая плотность размещения элементов в структуре (см., например, Тронов В.П. Системы нефтегазосбора и гидродинамика основных технологических процессов. Казань: изд. «Фен» 2002 г. 512 с., с.129-135).

Рассмотрим осуществление способа на примере устройства, собранного по схеме, представленной на фигуре 1.

Поток водонефтяной эмульсии 5, транспортируемый по трубопроводу 3 с площадью поперечного сечения S т, содержащему открытую направляющую структуру коаксиального типа 2 с площадью поперечного сечения Sл , образующую трубопроводом межтрубную зону 4 с площадью поперечного сечения (Sт-Sл) и формирующую распределение энергии потерь СВЧ от источника СВЧ-энергии 1, пропускают через структуру из элементов 7, расположенных в межтрубной зоне 4 вдоль поверхности открытой распределенной направляющей структуры 2.

Структура из элементов 7 увеличивает площадь контакта потока водонефтяной эмульсии с поверхностями диэлектрической структуры в зоне действия электромагнитного поля, изменяет поле скоростей в различных слоях потока, что приводит к взаимному перемещению глобул воды в потоке и их сближению между собой. Длительность взаимодействия потока водонефтяной эмульсии 5 с электромагнитным полем открытой направляющей структуры 2 регулируется задвижкой 6, изменяющей расход в потоке водонефтяной эмульсии 5 по трубопроводу 3. В известных методах разделения водонефтяной эмульсии (см., например, Тронов В.П. Системы нефтегазосбора и гидродинамика основных технологических процессов. Казань: изд. «Фен» 2002 г. 512 с., с.302-319) ускорение разделения эмульсии путем разделения потока на мелкие каналы и увеличения площади контакта с поверхностью обеспечивается за счет формирования в потоке турбулентного движения эмульсии, что приводит к разрушению глобул воды за счет их механического взаимодействия со стенками каналов. Для этого требуется большая скорость потока в канале, определяемая числом Рейнольдса Re = от 50000 до 100000, и процесс разрушения глобул воды протекает неэффективно. В данном случае разрушение глобул воды происходит не за счет их ударов о стенки каналов, а под действием на поверхностные заряды пограничного слоя оболочек, разделяющих глобулы воды, пондемоторных сил, возникающих в электромагнитном поле при их сближении друг с другом в потоке. При этом под действием поля происходит разрушение оболочек контактирующих в потоке между собой глобул воды и их последующее слияние. Этот процесс разрушения и слияния глобул воды в потоке эмульсии происходит не только на стенках структуры из элементов 7, но и внутри перемешиваемой массы в потоке эмульсии. Таким образом, в данном изобретении сочетание двух процессов: механического и электромагнитного приводит к повышению эффективности процесса разделения водонефтяной эмульсии. Выполнение структуры из элементов 7 из диэлектрических материалов необходимо для выполнения требований по обеспечению соответствующих граничных условий для электромагнитного поля в межтрубной зоне (см., например, В.И.Вольман, Ю.В.Пименов. Техническая электродинамика. Изд. «Связь». 1971 г., с.40-51).

В устройстве по прототипу межтрубная зона свободна от структуры из элементов и движение эмульсии в ней протекает в более ламинарном потоке. Это снижает интенсивность взаимодействия глобул воды в потоке эмульсии между собой и процесс их разрушения протекает менее эффективно, поскольку процесс их перемешивания в трубе протекает медленно и требует большего времени. Соответственно, потребуется большая протяженность межтрубной зоны. Таким образом, в устройствах, реализованных согласно прототипу, будут требоваться открытые направляющие структуры большей протяженности. При этом при одинаковой плотности электромагнитного потока с поверхности направляющей структуры потребление СВЧ-энергии возрастет пропорционально увеличению длины направляющей структуры.

Таким образом, размещение структуры из элементов 7 в межтрубной зоне 4 согласно данному изобретению позволяет сжать протяженность L этой зоны по отношению к прототипу и уменьшить длину открытой направляющей структуры, размещаемой в трубопроводе. При заданной плотности потока электромагнитной энергии с поверхности линии передачи ее укорочение будет означать снижение требуемой мощности сигнала, подводимого к ее входу.

В экспериментальной установке, не содержащей структуру из элементов (согласно прототипу), трубопровод с межтрубной зоной длиной L=6 м, с расходом в потоке эмульсии 2 л/мин и мощностью источника энергии СВЧ Р0 =1400 Вт, после отстоя в течение 5 мин в результате расслоения водонефтяной эмульсии отделилась нефть с обводненностью 4-6%.

При размещении структуры из элементов в межтрубной зоне в виде коаксиально расположенной лавсановой сетки с ячейками 5×5 мм, длиной L=2,5 м, с расходом в потоке эмульсии 2 л/мин и мощностью источника энергии Р0=700 Вт, после отстоя в течение 3 мин обводненность отслоившейся нефти составила 3-4%. Исходный продукт ВНЭ - с содержанием воды 20%.

Класс F17D1/16 облегчение перемещения жидкостей или воздействие на перемещение вязких продуктов изменением их вязкости

способ подготовки высоковязкой нефти и попутного нефтяного газа к трубопроводному транспорту -  патент 2525052 (10.08.2014)
комплекс для доставки природного газа потребителю -  патент 2520220 (20.06.2014)
способ трубопроводного транспорта многофазной многокомпонентной смеси -  патент 2503878 (10.01.2014)
система обустройства месторождения тяжелой нефти и природного битума (варианты) -  патент 2503806 (10.01.2014)
способ подготовки природного газа для транспортирования -  патент 2500950 (10.12.2013)
устройство для подготовки природного газа для транспортирования -  патент 2498153 (10.11.2013)
способ доставки природного газа потребителю -  патент 2496048 (20.10.2013)
противообледенительное покрытие и его применение -  патент 2493478 (20.09.2013)
способ подготовки газа и газового конденсата к транспорту -  патент 2488428 (27.07.2013)
способ формирования молекулярного покрытия на поверхностях изделий из металлов и сплавов -  патент 2485360 (20.06.2013)

Класс B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого

способ и устройство для использования смесительных элементов в системах уф-обеззараживания сточных вод/оборотной воды -  патент 2515315 (10.05.2014)
способ и устройство для плазмохимической очистки газов от органических загрязнений -  патент 2508933 (10.03.2014)
способ продления ресурса графитового ядерного канального реактора -  патент 2501105 (10.12.2013)
устройство для получения битума -  патент 2499813 (27.11.2013)
плазмохимический способ получения модифицированного ультрадисперсного порошка -  патент 2492027 (10.09.2013)
способ очистки углеводородного газа от сероводорода -  патент 2477649 (20.03.2013)
установка для электрогидравлического обогащения и концентрирования минерального, в том числе золотосодержащего сырья с высоким содержанием глинистых компонентов -  патент 2477173 (10.03.2013)
способ очистки сточных вод -  патент 2473469 (27.01.2013)
установка для электровзрывной активации водных пульп и суспензий -  патент 2470875 (27.12.2012)
система распыления топлива при содействии электрического поля и способы использования -  патент 2469205 (10.12.2012)
Наверх