катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора

Классы МПК:B01J27/188 с хромом, молибденом, вольфрамом или полонием
B01J27/199 с хромом, молибденом, вольфрамом или полонием
B01J21/08 диоксид кремния
B01J21/04 оксид алюминия
B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды
B01J21/12 диоксид кремния и оксид алюминия
B01J21/16 глины или прочие минеральные силикаты
B01J37/02 пропитывание, покрытие или осаждение
C07D213/10 из ацетальдегида или его циклических полимеров
Автор(ы):, , ,
Патентообладатель(и):КАУНСИЛ ОФ САЙЕНТИФИК ЭНД ИНДАСТРИАЛ РИСЕРЧ (IN)
Приоритеты:
подача заявки:
2003-12-31
публикация патента:

Изобретение относится к катализатору для синтеза 2- и 4-пиколинов, способу его получения и способу получения 2- и 4-пиколина. Описан катализатор, который может быть использован для синтеза 2- и 4-пиколинов, содержащий гетерополикислоту, выбранную из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту, нанесенную на подложку-силикагель, размер частиц которого составляет 6-14 меш. Описан также способ получения катализатора, включающий растворение гетерополикислоты в дистиллированной воде, смешивание полученной смеси с требуемым количеством силикагеля для получения взвеси, перемешивание взвеси до получения равномерной пропитки, сушку взвеси на воздухе при температуре 200-250°С от 0,5 до 1,5 часов, дальнейшее нагревание взвеси при температуре от 300 до 400°С от 0,5 до 1,5 часов и охлаждение полученного продукта до комнатной температуры в эксикаторе для получения требуемого катализатора. Описан способ получения 2- и 4-пиколинов, включающий взаимодействие ацетальдегида и аммиака при нагревании в присутствии описанного выше катализатора. Технический эффект - получение стабильного, высокоселективного и активного катализатора. 3 н. и 11 з.п. ф-лы.

Формула изобретения

1. Катализатор, который может быть использован для синтеза 2- и 4-пиколинов, содержащий гетерополикислоту, выбранную из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту, нанесенную на подложку-силикагель, размер частиц которого составляет 6-14 меш.

2. Способ получения катализатора по п.1, который может быть использован для синтеза 2- и 4-пиколинов, включающий растворение гетерополикислоты в дистиллированной воде, смешивание полученной смеси с требуемым количеством силикагеля для получения взвеси, перемешивание взвеси до получения равномерной пропитки, сушку взвеси на воздухе при температуре 200-250°С от 0,5 до 1,5 ч, дальнейшее нагревание взвеси при температуре от 300 до 400°С от 0,5 до 1,5 ч и охлаждение полученного продукта до комнатной температуры в эксикаторе для получения требуемого катализатора.

3. Способ по п.2, в котором гетерополикислота выбрана из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту.

4. Способ по п.2, в котором силикагель имеет размер частиц 6-14 меш.

5. Способ по п.2, в котором гетерополикислоту растворяют в дистиллированной воде в соотношении 0,5:4,5 (мас./мас.).

6. Способ по п.2, в котором взвесь перемешивают в течение 30-40 мин.

7. Способ получения 2- и 4-пиколинов, включающий взаимодействие ацетальдегида и аммиака при нагревании в присутствии катализатора по п.1, включающего гетерополикислоту, нанесенную на силикагель, и отделение образовавшегося 2- и 4-пиколина.

8. Способ по п.7, в котором ацетальдегид и аммиак берут в соотношении от 0,8 до 1,2 (мас./мас.) и подвергают взаимодействию при температуре от 300 до 500°С.

9. Способ по п.7, в котором взаимодействие осуществляют в стеклянном реакторе.

10. Способ по п.7, в котором объемную скорость использования ацетальдегида и аммиака поддерживают в диапазоне от 0,1 до 10 г/г катализатора.

11. Способ по п.10, в котором объемную скорость использования ацетальдегида и аммиака поддерживают в диапазоне от 1 до 3 г/г катализатора.

12. Способ по п.7, в котором 2- и 4-пиколины отделяют фракционированной перегонкой.

13. Способ по п.7, в котором гетерополикислота выбрана из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту.

14. Способ по п.7, в котором связующее включает силикагель, размер частиц которого составляет 6-14 меш.

Описание изобретения к патенту

Настоящее изобретение касается композитного катализатора для синтеза 2- и 4-пиколинов. Настоящее изобретение также касается способа получения катализатора, который может быть использован для синтеза 2- и 4-пиколинов. Настоящее изобретение также касается способа получения 2- и 4-пиколинов с использованием упомянутого нового катализатора. Настоящее изобретение может быть использовано для получения различных промежуточных соединений для фармацевтических и агрохимических веществ. 4-Пиколин в основном предназначен для синтеза 4-винилпиридина и гидразида изоникотиновой кислоты (INH), противотуберкулезного лекарственного средства.

Уровень техники

Коммерчески важными источниками оснований пиридина являются деготь и насыщенная жидкость, полученная при коксовании угля. Однако выполнение строгих технических условий, предъявляемых к данным продуктам при фармацевтическом и сельскохозяйственном использовании, не может быть обеспечено природными источниками, в частности побочными продуктами после коксования угля. Среди различных синтетических способов наиболее известной реакцией для получения оснований пиридина является реакция между ацетальдегидом и аммиаком.

Кислоты используются в качестве катализаторов или сокатализаторов в самых различных реакциях. В патенте США 218692 указано, что этаноламины могут быть получены из аммиака или первичного оксида амина или этилена и такой соли слабой кислоты, как карбонат аммония, в присутствии алифатического радикала, который является положительным относительно водорода. В патенте Германии 844449 (СА 48:1429 с) описано получение третичных аминов с гидроксиалкильными радикалами из аммиака, первичных или вторичных аминов и оксида алкилена при температуре от 30°С до 60°С, при этом улучшение выхода возможно также в присутствии воды или слабой кислоты. В Британском патенте №497093 (СА 36:4131-8) указано, что моноалкиламины могут быть получены из оксидов олефина и аммиака в присутствии воды и кислоты.

До настоящего времени взаимодействие ацетальдегида или некоторых других низкомолекулярных альдегидов и аммиака в отсутствии или присутствии метанола и/или формальдегида для получения их пиридиновых и алкильных производных осуществляли в присутствии аморфных композитов кремнезема-глинозема, содержащих различные промоторы. Выход требуемых продуктов, полученных с использованием таких катализаторов, был низким. Как указано в Advances in Catalysis, Volume 18, page 344 (1968), Academic Press, Inc., New York, N.Y., алкилпиридины также были синтезированы путем пропускания газообразного ацетальдегида и аммиака над кристаллическими алюмосиликатами, NaX и Н-морденитом. Несмотря на то, что первоначальная конверсия с использованием упомянутых веществ в качестве катализаторов была высокой, дезактивация за счет коксования происходила быстро, давая коммерчески непривлекательную систему, характеризующуюся низкой каталитической стабильностью.

В патенте США 4220783 описан способ синтеза пиридина или алкилпиридинов взаимодействием аммиака и карбонильного реагента, представляющего собой альдегид, содержащий от 2 до 4 атомов углерода, кетона, содержащего от 3 до 5 атомов углерода, или смеси упомянутых альдегидов и/или кетонов в приемлемых условиях в присутствии катализатора, включающего кристаллический алюмосиликатный цеолит, имеющий отношение кремнезема к глинозему по меньшей мере около 12 и индекс проницаемости приблизительно от 1 до 12, и выделение из получаемой реакционной смеси продукта, содержащего по меньшей мере одно соединение пиридина или алкилпиридина. Добавление к сырью метанола и/или формальдегида увеличивает селективность по отношению к незамещенному пиридину. Выходы требуемого продукта были низкими. Получение оснований пиридина с использованием катализатора вызывает загрязнение окружающей среды, поскольку такие способы используют токсичные ThO2 и CdO. Получение катализатора включает трудоемкий способ получения геля кремнезема-глинозема.

Цели изобретения

Основной целью данного изобретения является получение катализатора, подходящего для превращения ацетальдегида и аммиака в 2- и 4-пиколины, преодолевающего вышеупомянутые недостатки.

Другой целью данного изобретения является получение стабильного катализатора для превращения ацетальдегида и аммиака.

Следующей целью данного изобретения является получение высокоселективного и активного катализатора.

Сущность изобретения

Соответственно настоящее изобретение касается катализатора, который может быть использован для синтеза 2- и 4-пиколинов, содержащих гетерополикислоту, выбранную из группы, включающей кремневольфрамовую кислоту, фосфовольфрамовую кислоту, фосфомолибденовую кислоту и ванадовольфрамовую кислоту, нанесенную на подложку.

Согласно одному из вариантов данного изобретения подложку выбирают из группы, включающей силикагель, глинозем, кремнезем-глинозем, глины и монтмориллонит.

Настоящее изобретение также касается способа получения катализатора, который может быть использован для синтеза 2- и 4-пиколинов, включающего растворение гетерополикислоты в дистиллированной воде; смешивание полученной смеси с требуемым количеством связующего для получения взвеси; перемешивание взвеси до равномерной пропитки; сушку взвеси на воздухе при температуре 200-250°С от 0,5 до 1,5 часов; дальнейшее нагревание взвеси при температуре от 300 до 400°С от 0,5 до 1,5 часов и охлаждение полученного продукта до комнатной температуры в эксикаторе для получения требуемого катализатора.

Согласно одному из вариантов данного изобретения гетерополикислота выбрана из группы, включающей кремневольфрамовую кислоту, фосфовольфрамовую кислоту, фосфомолибденовую кислоту и ванадовольфрамовую кислоту.

Согласно другому варианту данного изобретения связующее выбрано из группы, включающей кремнезем, глинозем, кремнезем-глинозем, глины и монтмориллонит.

Согласно другому варианту данного изобретения гетерополикислоту растворяют в дистиллированной воде в соотношении 0,5:4,5 (мас./мас.).

Согласно другому варианту данного изобретения связующее включает силикагель, размер частиц которого составляет 6-14 меш.

Согласно очередному варианту данного изобретения взвесь перемешивают в течение 30-40 минут.

Настоящее изобретение также касается способа получения 2- и 4-пиколинов, включающего взаимодействие ацетальдегида и аммиака при нагревании в присутствии катализатора, включающего композит гетерополикислоты, нанесенного на подложку, при этом катализатор присутствует в количестве от 5 до 15 мас.%, и отделение образовавшегося 2- и 4-пиколина.

Согласно одному из вариантов данного изобретения ацетальдегид и аммиак берут в соотношении от 0,8 до 1,2 (мас./мас.) и подвергают взаимодействию при температуре от 300 до 500°С.

Согласно другому варианту данного изобретения взаимодействие осуществляют в стеклянном реакторе.

Согласно очередному варианту данного изобретения объемную скорость подачи ацетальдегида и аммиака поддерживают в диапазоне от 0,1 до 10 г/г катализатора (предпочтительно - от 1 до 3).

Согласно очередному варианту данного изобретения 2- и 4-пиколины отделяют фракционированной перегонкой.

Подробное описание изобретения

Настоящее изобретение касается катализатора, который может быть использован для синтеза 2- и 4-пиколинов, получаемого растворением гетерополикислоты в дистиллированной воде в подходящей пропорции в диапазоне 0,5:4,5 (мас./мас.). Затем полученную смесь смешивают с требуемым количеством связующего, такого как силикагель (размер частиц которого составляет 6-14 меш), и полученную взвесь перемешивают в течение периода времени в диапазоне 30-40 минут для получения равномерной пропитки. После достижения равномерной пропитки взвесь вначале сушат на воздухе при температуре 200-250°С от 0,5 до 1,5 часов, а затем дополнительно нагревают при температуре от 300 до 400°С от 0,5 до 1,5 часов. Затем полученный продукт охлаждают до комнатной температуры в эксикаторе для получения требуемого катализатора.

Гетерополикислота выбрана из кремневольфрамовой кислоты, фосфовольфрамовой кислоты, фосфомолибденовой кислоты и ванадовольфрамовой кислоты, а связующее выбрано из кремнезема, глинозема, кремнезема-глинозема, глин, монтмориллонита.

Полученный катализатор может быть использован для синтеза 2- и 4-пиколинов нагреванием ацетальдегида и аммиака в соотношении от 0,8 до 1,2 (мас./мас.) при температуре от 300 до 500°С. Количество катализатора составляет от 5 до 15 мас.%, а взаимодействие предпочтительно осуществляют в стеклянном реакторе. Взаимодействие осуществляют, поддерживая объемную скорость подачи сырья, включающего ацетальдегид и аммиак, от 0,1 до 10 г/г катализатора (предпочтительно - от 1 до 3). Основания пиридина и полученный продукт анализируют известными спектрохроматографическими способами, при этом основания пиридина отделяют от требуемых продуктов известной фракционированной перегонкой.

Новизна настоящего изобретения заключается в получении катализатора для превращения ацетальдегида и аммиака в 2- и 4-пиколины экологически благоприятным способом. Данный способ не вызывает загрязнения окружающей среды по сравнению с известными способами.

Следующие примеры приведены с целью иллюстрации настоящего изобретения и не должны рассматриваться как ограничивающие его объем.

Пример 1

Получение катализатора: использование в качестве подложки для кремнезема силикагеля с размером частиц 6-14 меш.

Фосфовольфрамовую кислоту (10 г) растворяют в воде (25 мл) и раствор смешивают с силикагелем (100 г). Смесь перемешивают для получения равномерной пропитки, сушат на воздухе при температуре 200-250°С в течение часа, а затем при температуре 400°С в течение часа и, наконец, охлаждают до комнатной температуры в эксикаторе. Полученный катализатор используют для взаимодействия между ацетальдегидом и аммиаком.

Эксперимент осуществляют в стеклянном реакторе с нисходящим потоком, имеющим внутренний диаметр 2 см и достаточную длину, который помещают в печь длиной 32 см. В середину реактора помещают полученный катализатор (10 г) и нагревают его до 380°С с помощью трубчатой электрической печи. Ацетальдегид подают со скоростью 9,5 мл/час, а аммиак подают со скоростью 60 мл/мин. Продукты, полученные за 2 часа, конденсируют в охлаждаемом льдом приемнике, взвешивают и анализируют при помощи газового хроматографа (оборудован FID с использованием колонки SS (из нержавеющей стали) размером 2 м×3 мм, содержащей 30% глицерина на хромосорбе-п. Температуру колонки поддерживают на уровне 135°С, при этом скорость потока азота составляет 30 мл/мин). Для калибровки используют чистые стандартные вещества. Было установлено, что превращение ацетальдегида в пиколины составляет 50-60%.

Пример 2

Получение катализатора: использование в качестве подложки для кремнезема силикагеля с размером частиц 6-14 меш.

Кремневольфрамовую кислоту (10 г) растворяют в воде (25 мл) и раствор смешивают с силикагелем (100 г). Смесь перемешивают для получения равномерной пропитки, сушат на воздухе при температуре 225°С в течение часа, а затем при температуре 400°С в течение часа и, наконец, охлаждают до комнатной температуры в эксикаторе. Полученный катализатор используют для взаимодействия между ацетальдегидом и аммиаком.

Эксперимент осуществляют в стеклянном реакторе с нисходящим потоком, имеющим внутренний диаметр 2 см и достаточную длину, который помещают в печь длиной 32 см. В середину реактора помещают полученный катализатор (10 г) и нагревают его до 400°С с помощью трубчатой электрической печи. Ацетальдегид подают со скоростью 9,5 мл/час, а аммиак подают со скоростью 60 мл/мин. Продукты, полученные за 2 часа, конденсируют в охлаждаемом льдом приемнике, взвешивают и анализируют при помощи газового хроматографа (оборудован FID с использованием колонки из нержавеющей стали размером 2 м×3 мм, содержащей 30% глицерина на хромосорбе-п. Температуру колонки поддерживают на уровне 135°С, при этом скорость потока азота составляет 30 мл/мин). Для калибровки используют чистые стандартные вещества. Было установлено, что превращение ацетальдегида в пиколины составляет 55%.

Пример 3

Получение катализатора: использование в качестве подложки для кремнезема силикагеля с размером частиц 6-14 меш.

Ванадовольфрамовую кислоту (10 г) растворяют в воде (25 мл) и раствор смешивают с силикагелем (100 г). Смесь перемешивают для получения равномерной пропитки, сушат на воздухе при температуре 210°С в течение часа, а затем при температуре 400°С в течение часа и, наконец, охлаждают до комнатной температуры в эксикаторе. Полученный катализатор используют для взаимодействия между ацетальдегидом и аммиаком.

Эксперимент осуществляют в стеклянном реакторе с нисходящим потоком, имеющим внутренний диаметр 2 см и достаточную длину, который помещают в печь длиной 32 см. В середину реактора помещают полученный катализатор (10 г) и нагревают его до 370°С с помощью трубчатой электрической печи. Ацетальдегид подают со скоростью 9,5 мл/час, а аммиак подают со скоростью 60 мл/мин. Продукты, полученные за 2 часа, конденсируют в охлаждаемом льдом приемнике, взвешивают и анализируют при помощи газового хроматографа (оборудован FID с использованием колонки из нержавеющей стали размером 2 м×3 мм, содержащей 30% глицерина на хромосорбе-п. Температуру колонки поддерживают на уровне 135°С, при этом скорость потока азота составляет 30 мл/мин). Для калибровки используют чистые стандартные вещества. Было установлено, что превращение ацетальдегида в пиколины составляет 70%.

Основные преимущества настоящего изобретения следующие.

1. Способ очень прост и экономичен.

2. Получение катализатора не является трудоемким по сравнению с известными способами.

Скачать патент РФ Официальная публикация
патента РФ № 2328343

patent-2328343.pdf

Класс B01J27/188 с хромом, молибденом, вольфрамом или полонием

смешанные оксидные катализаторы для каталитического окисления в газовой фазе -  патент 2480280 (27.04.2013)
способ получения катализатора гидрообработки путем пропитки фосфорсодержащим соединением -  патент 2451551 (27.05.2012)
носитель на основе оксида кремния, гетерополикислотный катализатор на его основе и синтез сложных эфиров в присутствии гетерополикислотного катализатора, нанесенного на оксид кремния -  патент 2395487 (27.07.2010)
способ и катализатор производства уксусной кислоты -  патент 2393918 (10.07.2010)
цеолитные катализаторы с контролируемым содержанием промотирующего элемента и улучшенный способ обработки углеводородных фракций -  патент 2378050 (10.01.2010)
промотированный алюмосиликатный катализатор и улучшенный способ обработки углеводородного сырья -  патент 2372984 (20.11.2009)
каталитическая тримеризация олефиновых мономеров -  патент 2352389 (20.04.2009)
катализатор и способ алкилирования изобутана -  патент 2306175 (20.09.2007)
катализатор и способ конверсии углеводородного сырья, содержащего парафины с 4-24 атомами углерода -  патент 2266787 (27.12.2005)
катализатор, способ его приготовления и способ изомеризации н-парафинов с использованием этого катализатора -  патент 2264256 (20.11.2005)

Класс B01J27/199 с хромом, молибденом, вольфрамом или полонием

смешанные оксидные катализаторы в виде полых тел -  патент 2491122 (27.08.2013)
способ предварительной обработки для осахаривания растительного волокнистого материала и способ осахаривания -  патент 2486256 (27.06.2013)
катализатор для обработки выхлопных газов -  патент 2429908 (27.09.2011)
способ окисления меркаптанов, содержащихся в углеводородах -  патент 2406750 (20.12.2010)
катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления -  патент 2386476 (20.04.2010)
катализатор и способ получения метилэтилкетона -  патент 2275960 (10.05.2006)
катализатор и способ получения метилэтилкетона -  патент 2230612 (20.06.2004)
катализатор и способ получения фенола из бензола -  патент 2205688 (10.06.2003)
способ получения 2,3,5-триметил-1,4-бензохинона и катализатор для его осуществления -  патент 2165406 (20.04.2001)
способ получения 2-метил-1,4 нафтохинона и катализатор для его осуществления -  патент 2162837 (10.02.2001)

Класс B01J21/08 диоксид кремния

катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
катализатор для получения этилена и способ получения этилена с использованием этого катализатора -  патент 2523013 (20.07.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ одновременного получения ароматических углеводородов и дивинила -  патент 2495017 (10.10.2013)
способ изготовления текстильного катализатора (варианты) -  патент 2490065 (20.08.2013)
катализатор для очистки отходящих газов, содержащих летучие органические соединения, способ его получения и способ очистки отходящих газов, содержащих летучие органические соединения -  патент 2490062 (20.08.2013)
композитный фотокатализатор для очистки воды и воздуха -  патент 2478413 (10.04.2013)
катализатор синтеза фишера-тропша, способ его приготовления и применения -  патент 2478006 (27.03.2013)
катализатор синтеза фишера-тропша, его изготовление и применение -  патент 2477654 (20.03.2013)

Класс B01J21/04 оксид алюминия

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ конверсии оксидов углерода -  патент 2524951 (10.08.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
шариковый катализатор крекинга "адамант" и способ его приготовления -  патент 2517171 (27.05.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2516702 (20.05.2014)
способ получения наноструктурных каталитических покрытий на керамических носителях для нейтрализации отработавших газов двигателей внутреннего сгорания -  патент 2515727 (20.05.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)

Класс B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды

способ получения этилена -  патент 2528830 (20.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
способ получения высокооктанового автомобильного бензина -  патент 2524213 (27.07.2014)
способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра -  патент 2520100 (20.06.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
катализатор очистки выхлопных газов и способ его изготовления -  патент 2515542 (10.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)

Класс B01J21/12 диоксид кремния и оксид алюминия

носители катализатора на основе силикагеля -  патент 2522595 (20.07.2014)
объединенный способ каталитичеcкого крекинга в псевдоожиженном слое катализатора для получения высококачественных углеводородных смесей в качестве топлива -  патент 2518119 (10.06.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)
катализатор окисления для оснащенных дизельным двигателем транспортных средств для перевозки пассажиров, грузов и для нетранспортных работ -  патент 2489206 (10.08.2013)
комплексный способ крекинга с псевдоожиженным катализатором для получения смесей углеводородов, обладающих высоким топливным качеством -  патент 2481388 (10.05.2013)
катализаторы гидрирования со связующими, имеющими низкую площадь поверхности -  патент 2480279 (27.04.2013)
катализатор синтеза фишера-тропша, способ его приготовления и применения -  патент 2478006 (27.03.2013)
катализатор синтеза фишера-тропша, его изготовление и применение -  патент 2477654 (20.03.2013)
катализатор, способ его приготовления и способ получения -пиколина -  патент 2474473 (10.02.2013)

Класс B01J21/16 глины или прочие минеральные силикаты

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
шариковый катализатор крекинга "адамант" и способ его приготовления -  патент 2517171 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
содержащие вольфрамовые соединения катализаторы и способ дегидратации глицерина -  патент 2487754 (20.07.2013)
способ регенерации катализатора, используемого при дегидратации глицерина -  патент 2484895 (20.06.2013)
микросферический катализатор для крекинга нефтяных фракций и способ его приготовления -  патент 2473385 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)
микросферический катализатор для снижения содержания серы в бензине крекинга и способ его приготовления -  патент 2472586 (20.01.2013)
способ переработки бензинов термических процессов и катализатор для его осуществления -  патент 2469070 (10.12.2012)
способ приготовления блочных сотовых кордиеритовых катализаторов очистки отработавших газов двигателей внутреннего сгорания -  патент 2442651 (20.02.2012)

Класс B01J37/02 пропитывание, покрытие или осаждение

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения -  патент 2528389 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления -  патент 2523015 (20.07.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)

Класс C07D213/10 из ацетальдегида или его циклических полимеров

Наверх