катализатор, способ его получения и процесс дегидрирования c 3-c5-парафиновых углеводородов в олефины

Классы МПК:B01J23/26 хром
B01J23/10 редкоземельных элементов
B01J23/04 щелочные металлы
B01J21/02 бор или алюминий; их оксиды или гидроксиды
B01J35/02 твердые
B01J37/02 пропитывание, покрытие или осаждение
C07C5/333 каталитические способы
B82B1/00 Наноструктуры
Автор(ы):, , , , , , , , , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова Сибирского отделения Российской Академии наук (RU)
Приоритеты:
подача заявки:
2006-12-18
публикация патента:

Изобретение относится к области получения олефиновых углеводородов каталитическим дегидрированием соответствующих парафиновых С 35 углеводородов и может найти применение в химической и нефтехимической промышленности. Описан катализатор дегидрирования С3 5-парафиновых углеводородов в олефины, содержащий оксид хрома, оксид щелочного металла, оксиды переходных металлов и носитель, в качестве носителя он содержит наноструктурированное кислородсодержащее соединение алюминия общей формулы: Al 2O3-х(ОН)х*nH 2O, где: х=0-0,28, n=0,03-1,8, состоящее из наноструктуированных первичных частиц размером 2-5 нм и характеризующееся разупорядоченной/дефектной слоистой структурой, близкой к структуре байерита. Описан способ приготовления этого катализатора и процесс дегидрирования С 35-парафиновых углеводородов в олефиновые углеводороды, который проводят в кипящем слое описанного выше катализатора при циркуляции катализатора по контуру: реактор дегидрирования - реактор регенерации. Технический результат - высокая механическая прочность, каталитическая активность и стабильность. 3 н. и 17 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к области получения олефиновых углеводородов каталитическим дегидрированием соответствующих парафиновых С 35 углеводородов и может найти применение в химической и нефтехимической промышленности.

Физико-химические особенности реакций дегидрирования существенным образом влияют на технологическое оформление процессов и выбор каталитической системы. К числу основных факторов, определяющих технологическое и конструктивное оформление процессов дегидрирования, относятся:

1. Необходимость подвода большого количества тепла в зону реакции из-за эндотермического характера реакций.

2. Обеспечение высокой температуры для достижения рентабельных глубин дегидрирования.

3. Малое время контакта для получения высокой селективности.

4. Необходимость выжига коксовых отложений или создания катализаторов, устойчивых к коксу.

5. Необходимость быстрого охлаждения продуктов реакции для предотвращения протекания реакции полимеризации.

Среди возможных технологических вариантов процесса дегидрирования, в наибольшей степени позволяющих решить вышеперечисленные проблемы, особое место занимает метод дегидрирования в кипящем слое микросферического катализатора с циркуляцией катализатора по контуру реактор - регенератор. Однако данный вариант процесса налагает особы требования к катализатору: он должен не только обладать высокой активностью, селективностью, термостабильностью, но также иметь высокую устойчивость к истиранию и в тоже время не обладать высокими образивными характеристиками, способствующими истиранию оборудования.

В литературе описано множество различных решений, направленных на создание каталитических композиций, обладающих вышеперечисленными свойствами.

Известен катализатор, содержащий оксиды калия, хрома, кремния на оксиде алюминия (SU 1366200, B0J 37/02, 23/26, 1988). Катализатор получают пропиткой оксида алюминия, предварительно прокаленного при 1000-1150°С, сначала растворами соединений хрома и калия, последующей сушкой, затем повторной пропиткой раствором соединений кремния с последующей сушкой и прокаливанием.

Недостатком катализатора и способа является низкая механическая прочность и селективность.

Известен способ приготовления алюмохромового катализатора для дегидрирования парафиновых углеводородов (РФ 1736034, B01J 37/02, 23/26, 21/04, 1995), который включает прокаливание гидроксида алюминия во взвешенном слое при взаимодействии температур 450-800°С в течение 0,05-2,0 с с дальнейшим снижением температуры до 280-400°С, пептизацию гидроксида алюминия азотной кислотой с одновременным введением хром- и калийсодержащих соединений, формование распылительной сушкой и прокаливание, прокаливанию в указанных условиях подвергают 50-80 мас.% гидроксида алюминия, остальные 20-50 мас.% гидроксида алюминия прокаливают при 950-1200°С в течение 2-10 ч.

Катализатор имеет недостаточно высокую активность и стабильность, низкую механическую прочность. Способ его получения отличается сложностью и многостадийностью. Формование катализатора осуществляется на стадии распылительной сушки.

Известен способ получения катализатора процесса дегидрирования на основе Al, Cr, К и Si для процесса дегидрирования С3 5-парафиновых углеводородов (JP 7010350, B01J 23/26, 1995), который включает обработку обжигом при 500-700°С оксида алюминия с частицами в виде микросфер, обработку обжигом при температуре >1000°С в течение нескольких часов, обработку пропиткой продукта обжига раствором, содержащим соединения Cr и соединения К, обработку сушкой полученного продукта, обработку пропиткой продукта сушки раствором, содержащим соединение кремния и с последующим проведением заключительной обработки сушкой и обжигом при <700°С.

Недостатками получаемого катализатора являются также недостаточная прочность и стабильность, а также сложность и многостадийность процесса получения.

Известен способ получения олефиновых углеводородов дегидрированием в присутствии катализаторов следующего состава, мас.%: Cr2 O3 - 10,0-30,0; ZnO - 30,0-45,0; Al 2О3 - остальное [РФ 2178398, С07С 5/333, 1999]. В качестве носителя используют микросферические гранулы на основе алюмоцинковой шпинели. Максимальная производительность в данном процессе, определяемая произведением конверсии на селективность, составляет 52,4% от исходного изобутана при объемной скорости изобутана 400 ч-1 и температуре 590°С. Однако данный катализатор обладает недостаточной механической прочностью.

Известен процесс дегидрирования парафиновых углеводородов в присутствии хромсодержащего катализатора следующего состава, мас.%: Cr2O3 - 10,0-20,0; В2O3 - 1,0-1,5; Me2O - 0,5-2,5; SiO 2 - 0,5-2,0; Al2О 3 - остальное, где: Me - щелочной металл. В качестве носителя для катализатора используют микросферический оксид алюминия на основе гамма-, дельта-, тета-модификаций в различных соотношениях. Максимальный выход продукта (изобутена) составляет 51,7% при объемной скорости изобутана 400 ч-1 и температуре 574°С [РФ 2156233, С07С 5/333, 20.09.2000].

Известен катализатор для дегидрирования парафиновых углеводородов (РФ 2148430, B01J 23/26, 2000), который содержит оксиды хрома 12-23%, соединение щелочного и/или щелочно-земельного металла в количестве 0,5-3,5% и соединение неметалла: бора и/или кремния в количестве 0,1-10%. Катализатор содержит также, по крайней мере, одно соединение модифицирующего металла (Ti, Zr, Sn, Fe, Ga, Co, Mn, Mo) в количестве 0,5-1,5%. Катализатор сформирован в результате термообработки соединения алюминия формулы Al2О 3·nH2О, где n=0,3-1,5, рентгеноаморфной структуры совместно с остальными соединениями. Катализатор обладает высокой активностью и селективностью. Однако химический состав его достаточно сложен, что создает определенные трудности при воспроизведении его свойств в ходе приготовления.

Известен катализатор дегидрирования парафиновых углеводородов (РФ 2271860, B01J 23/26, 20.03.06), содержащий оксид хрома, соединение щелочного металла, диоксид циркония, промотор и оксид алюминия, предшественником которого является носитель - соединение алюминия формулы Al 2О3·nH2 О, где: n=0,3-1,5, ренггеноаморфной структуры. Катализатор содержит в качестве промотора, по крайней мере, одно соединение металла, выбранного из группы: цинк, медь, железо в количестве 0,03-2,0 мас.%. Катализатор предпочтительно сформирован в процессе термообработки носителя - соединения алюминия формулы Al2 O3·nH2О, где: n=0,3-1,5, рентгеноаморфной структуры, совместно с соединениями хрома, циркония, щелочного металла, промотора из группы: цинк, медь, железо. Катализатор обладает высокой начальной активностью и селективностью, однако достижение такого эффекта за счет введения добавок железа и меди неизбежно должно приводить к увеличению степени закокосования катализатора. Кроме того, известно, что оксид железа изоструктурен с катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322070/945.gif" BORDER="0" ALIGN="absmiddle"> -Al2О3 и по этой причине в литературе неоднократно описывались ситуации, когда наличие большого количества примесей железе в алюмохромовом катализаторе уменьшали срок его службы за счет постепенного образования в процессе эксплуатации неактивного твердого раствора активного компонента катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322070/945.gif" BORDER="0" ALIGN="absmiddle"> - Cr2О3 в катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322070/945.gif" BORDER="0" ALIGN="absmiddle"> -Al2О3.

Наиболее близким техническим решением является катализатор, который содержит оксид хрома в количестве 12-23 мас.%, соединение щелочного и/или щелочно-земельного металла в количестве 0,5-3,5 мас.%, диоксид циркония в количестве 0,1-5 мас.% и, по крайней мере, один оксидный промотор из группы: ниобий, тантал, гафний в количестве 0,001-2 мас.% на оксиде алюминия (РФ 2200143, С07С 5/333, B01J 23/26, 37/02, 10.03.2003). Катализатор сформирован в процессе термообработки соединения алюминия формулы Al 2O3·nH2 O, где: n=0,3-1,5, рентгеноаморфной структуры совместно с соединениями вышеназванных элементов. Для приготовления катализатора используют соединение алюминия слоистой рентгеноаморфной структуры формулы Al2O3·nH 2O, где: n=0,3-1,5, предпочтительно с поверхностью 50-250 м2/г. Это соединение может быть получено любыми известными способами, например быстрой дегидратацией гидраргиллита.

Недостатком данного катализатора является то, что он не имеет практического применения ввиду дефицитности и дороговизны используемых соединений гафния, ниобия, тантала. Кроме того, такой катализатор не решает проблему стабильности.

Задачей данного изобретения является разработка микросферического катализатора для дегидрирования парафиновых С35 углеводородов в олефины в кипящем слое, обладающего высокой механической прочностью, каталитической активностью и стабильностью.

Задача решается катализатором дегидрирования С 35-парафиновых углеводородов в олефины, который содержит оксид хрома, оксид щелочного металла, оксиды переходных металлов и в качестве носителя он содержит наноструктурированное кислородсодержащее соединение алюминия общей формулы: Al2O3-х (ОН)х*nH2O, где: х=0-0,28, n=0,03-1,8, состоящее из наноструктуированных первичных частиц размером 2-5 нм и характеризующееся разупорядоченной/дефектной слоистой структурой, близкой к структуре байерита.

Кислородсодержащее соединение алюминия общей формулы: Al2O 3-х(ОН)х*nH2 O получают в неравновесных условиях путем быстрой центробежной термоударной обработки гидроксида алюминия в насыщенных парах воды при повышенной температуре с последующим принудительным охлаждением полученного продукта.

В качестве исходного гидроксида алюминия используют гидраргиллит (гиббсит) или байерит.

Катализатор содержит, мас.%: 8,0-23,0 оксида хрома - Cr 2О3; 0,05-5,0 оксида щелочного металла - М2О; 0,1-5,0 оксида переходного металла - М'O2, остальное носитель.

Щелочной металл М выбран из ряда: Li, Na, К, Rb, Cs.

Переходной металл М' выбран из ряда: Zr и/или Се, и/или U.

Катализатор представляет собой микросферы со следующим распределением частиц по размерам, мас.%: <50 мкм - <30; 50-80 мкм - 20-30; 80-100 мкм - 15-25; 100-120 мкм - 15-20; 120-140 мкм - 10-15; >140 мкм <5.

Активным компонентом катализатора является микродисперсный с размером частиц, равным 2-5 нм, оксид катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322070/945.gif" BORDER="0" ALIGN="absmiddle"> -Cr2О3 на твердом растворе Cr3+ в катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322053/947.gif" BORDER="0" ALIGN="absmiddle"> -Al2О3 состава Al(21,33-х)CrхО 32, где: х=0,1-2,67, кубической структуры.

В предлагаемом решении в качестве исходного материала для синтеза катализатора используют кислородсодержащее соединение алюминия общей формулы Al2O3-х(ОН) х*nH2O, где: х=0-0,28, n=0,03-1,8, содержащее катионы алюминия в 4, 5 и 6 координированном состоянии по отношению к кислороду, имеющее поверхность 50-250 м 2/г, аморфную или плохо окристаллизованную, или частично кристаллическую структуру, средний размер частиц порошка составляет от 20 до 200 мкм. На термограммах данное соединение характеризуется наличием экзоэффекта в области температур 780-850°С, соответствующего упорядочению кристаллической структуры.

Получение кислородсодержащего соединения алюминия проводят методом быстрой центробежной термоударной активацией гидроксида алюминия со структурой гидраргиллита (гиббсита) или байерита при повышенной температуре в теплоизолированной камере под действием центробежных сил с последующим принудительным охлаждением (РФ 2237019, C01F 7/02, 27.09.2004). По данным сканирующей электронной микроскопии кислородсодержащее соединение алюминия общей формулы: Al2O3-х (ОН)х*nH2O, где: х=0-0,28, n=0,03-1,8, получаемое методом центробежной термоударной активацией, далее продукт - ЦТА, имеет форму частиц, близкую к сферической.

Центробежно-термическую активацию гидраргиллита (гиббсита) или байерита осуществляют в установке, которая представляет собой камеру, внутри которой вращается твердый теплоноситель - профилированная специальным образом тарель. Скорость вращения может изменяться и определяет время контакта. Под тарелью расположены нагревательные элементы. Температуру теплоносителя регулируют тремя термопарами. Технический гидрат глинозема (гидраргиллит) или байерит из бункера-дозатора подается на разогретую тарель, резко нагревается и под действием центробежной силы двигается по поверхности теплоносителя к стенкам камеры, снабженным рубашкой охлаждения. При ударе разогретых частиц продукта активации о холодные стенки камеры происходит их резкое охлаждение (закалка). Камера снабжена отверстиями для выхода пара и приемным бункером для порошка.

Носитель на основе продукта ЦТА представляет собой кислородсодержащее соединение алюминия общей формулы: Al2О 3-х(ОН)х*nH2 O, где: х=0-0,28, n=0,03-1,8, в состав которого входит аморфная фаза, сформированная из наноструктурированных первичных частиц с размером 2-5 нм.

На чертеже представлены кривые радиального распределения атомов в продуктах терморазложения (А) и для фаз псевдобемита (1) и байерита (2) (Б).

Исследование рентгеноаморфной фазы методом радиального распределения электронной плотности с построением модельных кривых для различных оксидных и гидроксидных фаз (чертеж) позволило установить, что продукт ЦТА отличается от ТХА продукта. Особенно заметно это отличие в области межатомных расстояний 4-6 А. Это отличие связано с наличием в продукте ЦТА межатомных связей, характерных для разупорядоченной/дефектной слоистой структуры, близкой к структуре байерита. По данным ЯМР Al27 интенсивность линий, принадлежащих катионам алюминия в 4, 5 и 6 координированном состоянии, по отношению к кислороду в продукте ЦТА отличается от аналогичного распределения в ТХА продукте (Д.A.Isupova, Yu.Yu.Tanashev, I.V.Kharina, E.M.Moroz et al. // Chemical Engeneering Journal 2005 v.107, issue 1-3, pp.163-169).

Продукт ЦТА обладает высокой химической активностью, что обеспечивает высокую скорость последующей его гидратации на стадии синтеза катализатора в присутствии воды в кислой среде в псевдобемит.

Эти свойства продукта способствуют получению катализатора дегидрирования низших С3-C 5 парафинов, обладающего высокой каталитической активностью, селективностью, стабильностью и механической прочностью, при низких абразивных свойствах.

Приготовленный с использованием продукта ЦТА катализатор содержит в качестве промотора щелочной металл и, по крайней мере, одно оксидное соединение металла, выбранного из группы: Zr, Ce, U; в количестве 0,05-5,0 мас.%; и катализатор имеет следующий состав, мас.% (в пересчете на оксид): оксид хрома - 10-20, соединение щелочного металла - 1-2, оксид циркония - 0,05-5, оксид церия - 0,05-5, оксид урана - 0.05-5, оксид алюминия - остальное.

Задача решается также способом приготовления катализатора.

Катализатор готовят при совмещении стадий гидратации продукта ЦТА в псевдобемит и нанесения активного компонента и модифицирующих добавок. Нанесение компонентов осуществляют методом одновременной пропитки продукта - ЦТА пропиточным раствором, содержащим соединения хрома, модифицирующей добавки щелочного металла и соединения одного из переходных металлов: Zr, Се или U. При приготовлении пропиточного раствора объем воды берут примерно на 30-40% больше, чем это требуется по влагоемкости носителя, с учетом того, что избыточное количество воды расходуется на гидратацию продукта ЦТА в псевдобемит - AlOOH. Пропитку проводят в течение 1-4 ч при температуре раствора 20-100°С (предпочтительно 40-100°С) при постоянном перемешивании в замкнутом объеме при постоянном парциальном давлении паров воды. Дополнительное тепло, выделяющееся за счет протекания экзотермической реакции гидратации продукта-ЦТА в псевдобемит, используется при приготовлении крупных партий катализатора (масса ˜50 кг и более) для последующей сушки катализатора. Сушка катализатора осуществляется в течение одного часа при непрерывном перемешивании с открытой крышкой пропитывателя.

Завершается формирование катализатора при прокаливании в течение 1-4 ч при температуре 700-780°С, предпочтительно, 750°С.

В качестве исходных веществ для приготовления пропиточного раствора используются хромовый ангидрид или растворы хромовой кислоты, гидроксиды или карбонаты щелочного металла, хроматы и/или бихроматы щелочного металла M2CrO4 или М 2Cr2O7, нитраты, хлориды, ацетаты или сульфаты циркония и/или церия.

По данным РФА активным компонентом катализатора является микродисперсный с размером частиц, равным 2-5 нм, оксид катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322070/945.gif" BORDER="0" ALIGN="absmiddle"> -Cr2O3 на твердом растворе Cr3+ в катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322053/947.gif" BORDER="0" ALIGN="absmiddle"> -Al2О3 состава Al(21,33-х)CrхО 32, где: х=0,1-2,67, кубической структуры. Промотирующие добавки оксидов щелочных металлов, а также оксидов Zr, Се и/или U находятся в рентгеноаморфном состоянии. Состав твердого раствора зависит от содержания хрома в катализаторе и глубины гидратации кислородсодержащего соединение алюминия общей формулы Al 2O3·nH2 O (n=0,1-2,0) в псевдобемит. Состав твердого раствора рассчитывали из изменения параметра кубической алюмооксидной фазы в катализаторе по отношению к параметру катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322053/947.gif" BORDER="0" ALIGN="absmiddle"> -Al2О3 фазы. Расчет параметра решетки проводили по линии (422) в области 66.6-67.2 град по 2катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322290/920.gif" BORDER="0" ALIGN="absmiddle"> .

Методы исследования

Фазовый состав исходного продукта ЦТА и катализатора определяли методами рентгенофазового анализа (РФА) и дериватографии (ДТА). РФА проводили на аппарате HZG-4c в области углов от 10 до 80 град по 2катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322290/920.gif" BORDER="0" ALIGN="absmiddle"> с компьютерной записью результатов. ДТА осуществляли на аппарате NETZSCH STA 449C со скоростью нагрева 10 град/мин.

Морфологическую форму частиц катализатора контролировали методом растровой сканирующей электронной микроскопии (СЭМ) на микроскопе марки JSM-6460 LV (Jeol).

Удельную поверхность и пористую структуру исходных продуктов ЦТА и катализаторов определяли на аппарате фирмы Quantachrome Corporation по адсорбции и десорбции азота. Для расчета величины удельной площади поверхности БЭТ, объема пор и распределения пор по размерам использовалась программа "Gas Sorpsion Report Autosob for Windows for AS-3 and AS-6" Version 1.23.

Фракционный состав катализатора определяли методом лазерного рассеивания на приборе Shimadzu SALD 2101.

Химический анализ катализатора проводили методом атомной абсорбции на аппарате Сатурн.

Задача решается также процессом дегидрирования С35-парафиновых углеводородов (изобутана или пропана) в олефиновые углеводороды, который проводят в кипящем слое описанного выше катализатора при циркуляции катализатора по контуру: реактор дегидрирования - реактор регенерации. Температура дегидрирования 520-610°С, температура регенерации - 560-650°С, объемная скорость подачи сырья 400-800 ч-1, время дегидрирования 10-30 мин, время регенерации 5-30 мин, время продувки инертным газом между стадиями дегидрирование - регенерация - дегидрирование - 3-15 мин.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. 40 кг технического гидрата глинозема (гидраргиллита) с исходной влажностью 4,5% и температурой 25°С подают со скоростью 15 кг/час на нагретую до 450°С тарель, время контакта 1.5 с. Полученный продукт ЦТА отсевают на сите 70 мкм.

Химический, фазовый состав и текстурные характеристики полученного носителя приведены в таблице 1.

Фракцию продукта размером 70-250 мкм подают на стадию пропитывания.

Готовят пропиточный раствор с учетом заданного состава катализатора в пересчете на оксиды, мас.%: хром - 16, калий - 1,5, цирконий - 1,0, оксид алюминия остальное. В емкость при перемешивании засыпают 21,3 г хромового ангидрида, 1,9 г гидроксида калия, 3,03 г карбоната циркония и приливают 1,25 мл концентрированной азотной кислоты и дистиллированной воды до получения расчетного объема пропиточного раствора. Раствор нагревают до температуры 40-60°С.

94,2 г просеянного продукта ЦТА помещают в смеситель с Z-образными лопастями и приливают полученный пропиточный раствор. Пропитку ведут в течение 1 часа, затем полученную пропитанную массу выгружают из смесителя, сушат в сушильном шкафу при 100-120°С в течение 24 ч и прокаливают в муфельной печи при температуре 750°С в течение 1 ч.

Данные по химическому составу, текстурным характеристикам и каталитическим свойствам полученных образцов приведены в таблице 2.

Пример 2. Приготовление носителя и катализатора готовят аналогично примеру 1, отличие состоит в том, что в пропиточный раствор добавляют нитрат церия для получения в готовом катализаторе 1 мас.% оксида церия.

Пример 3. Приготовление носителя и катализатора готовят аналогично примеру 1, отличие состоит в том, что в пропиточный раствор добавляют нитрат урана для получения в готовом катализаторе 1 мас.% оксида урана.

Пример 4. 40 кг технического гидрата глинозема (гидраргиллита) с исходной влажностью 4.5% и температурой 25°С подают со скоростью 15 кг/час на нагретую до 650°С тарель, время контакта 1.5 с.

Приготовление катализатора проводят аналогично примеру 1.

Пример 5. 100 кг технического гидрата глинозема с исходной влажностью 4,5% и температурой 25°С подают со скоростью 43 кг/ч на нагретую до 550°С тарель. Полученный продукт ЦТА отсевают на виброситах 70 мкм. Полученную фракцию продукта размером 70-200 мкм подают на стадию пропитывания.

Готовят пропиточный раствор аналогично примеру 1. Отличие состоит в том, что используют следующие навески наносимых компонентов в пересчете на оксиды:

хромовый ангидрид - 11,1 кг,

оксид калия - 0,94 кг,

оксид циркония - 0,52 кг,

вода - 4,9 л.

Суммарный объем пропиточного раствора 8,8 л. Этим раствором пропитывают 48 кг продукта ЦТА с размером части 70-250 мкм. Массовое соотношение жидкое:твердое = 0,183.

В Z-образный смеситель заливают пропиточный раствор, пропитку проводят при непрерывном перемешивании при закрытой крышке смесителя до повышения температуры пропиточного раствора до 90-100°С за счет протекания экзотермической реакции гидратации продукта ЦТА. Затем открывают крышку смесителя и проводят сушку при 100-80°С при непрерывном перемешивании до образования сыпучей массы. Высушенный катализатор прокаливают при 750°С 1 ч.

Пример 6. 100 кг технического гидрата глинозема с исходной влажностью 4,5% и температурой 20°С подают со скоростью 37 кг/ч на нагретую до 550°С тарель. Приготовление катализатора проводят аналогично примеру 5. Отличие состоит в том, что соотношение жидкое:твердое - 0,198.

Пример 7. 100 кг технического гидрата глинозема с исходной влажностью 4,5% и температурой 20°С подают со скоростью 40 кг/ч на нагретую до 450°С тарель.

Приготовление катализатора проводят аналогично примеру 5. Отличие состоит в том что соотношение жидкое:твердое - 0,239.

Пример 8. 40 кг технического гидрата глинозема подают со скоростью 15 кг/ч на нагретую до 400°С тарель, время контакта 1,5 с. Полученный продукт отсевают на сите 70 мкм. Полученную фракцию продукта размером более 70 мкм подают на стадию пропитывания.

Приготовление катализатора проводят аналогично примеру 1.

Пример 9. Продукт ЦТА получают аналогично примеру 8. Приготовление катализатора проводят аналогично примеру 1. Отличие состоит в том, что рассевом на ситах разного размера готовят катализатор следующего фракционного состава, мас.%: <50 мкм - <30%; 50-80 мкм - 20-30%; 80-100 мкм - 15-25%; 100-120 мкм - 15-20%; 120-140 мкм - 10-15%; >140 мкм <5%.

Пример 10 (прототип).

Соединение алюминия формулы Al2О3·nH 2О, где: n=0,7, в виде микросферического порошка с размером частиц от 100 до 200 мкм, с Sуд=138 м2/г загружают в пропитыватель. Туда же заливают пропиточный раствор, содержащий соединения хрома, калия, циркония и ниобия. Все компоненты берут в таких количествах, чтобы обеспечить после прокаливания состав катализатора в пересчете на оксиды, мас.%: хром - 16, калий - 1,5, цирконий - 1,0, ниобий - 1,0, оксид алюминия - остальное. Катализатор после сушки прокаливают при 750°С. Состав и каталитические свойства представлены в таблице 2.

Таблица 1
Характеристики исходных кислородсодержащих соединений алюминия Al(ОН)х·nH2O
ПримерППП, мас.% Содержание фаз, мас.% Al2O3-х(ОН)х·nH 2OSуд, м2V пор, см3
ГГБе Аморфная фаза
x n
113,5 76,8 86,20,060,82 1520,14
41,80 01000,07 0,071540,16
59 5095 0,250,21140 0,12
610 56 890,250,38 1360,12
7 1718,7 1071,30,29 0,911240,11
826,7 351550 0,251,75120 0,11
Прототип --- --0,7 138-
ГГ - гидраргиллит
Бе - бемит

Таблица 2
Состав, физико-химические и каталитические характеристики катализаторов в реакции дегидрирования изобутана и пропана в кипящем слое
Пример Фракционный состав,

мкм - мас.%
Sуд,

м2
Vпор,

см3
Потери при истирании за 1 ч мас.%Содержание, мас.%Каталитические характеристики при

580 (+/-2)°С
Cr2O3 К2OZrO 2CeO2 UO4
ВП мас.%ВР мас.% X %
1 234 567 8910 111213
170-90 - 6% 1320,164 15,71,51,0 --54,6 91,959,4
  91-160 - 66%               
 161-200 - 28%                
2-«- 1300,17 -16,01,5 1,01.0  56,093,060,2
3-«- 1250,16- 16,01,51,0 -1.055,0 92,259,6
470-90 - 8%114 0,173 16,61,5    53,2 90,059,2
 91-160 - 60%                
  161-200 - 32%               
570-90 - 1.0%101 0,175 11,81,71,0 --54,3 91,359,5
  91-160 -61%               
 161-200- 38%                
670-90 - 0%840,15 815,41,7 1,0-- 55,492,060,2
 91-160 - 66%                
  161-200 -34%               
770-90 - 0% 980,174 17,11,71,0 --54,6 92,359.1
  91-160 -60%               
 161-200 -40%                
870-90 - 6%1020,17 516,01,5 1,0-- 50,492,854,3
 91-160 - 78%            36,0*)88,7*) 40,6*)
  161-200 - 28%               
9<5 - <30% 1020,177 16,01,51,0 --53,1 93,257,0
  50-80-20 - 30%               
 80-100-15 - 25%                
  100-120-15 - 20%               
 120-140-10 - 15%               
 >140 - <5%.                
Прототип 100-200 - 100%100  3,418 3,01,0Ниобий - 1,05292 56,5
ВП - выход изобутилена на пропущенный изобутан
*) - выход пропилена на пропущенный пропан
ВР - выход изобутилена на разложенный изобутан (селективность)
*) - выход пропилена на разложенный пропан
Х - степень превращения изобутана
*) - степень превращения пропана

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Катализатор дегидрирования С3 5-парафиновых углеводородов в олефины, содержащий оксид хрома, оксид щелочного металла, оксиды переходных металлов и носитель, отличающийся тем, что в качестве носителя он содержит наноструктурированное кислородсодержащее соединение алюминия общей формулы Al2O3-х (ОН)х·nH2O, где х=0-0,28, n=0,03-1,8, состоящее из наноструктурированных первичных частиц размером 2-5 нм и характеризующееся разупорядоченной/дефектной слоистой структурой, близкой к структуре байерита.

2. Катализатор по п.1, отличающийся тем, что кислородсодержащее соединение алюминия общей формулы Al2O3-х (ОН)х·nH2O получают в неравновесных условиях путем быстрой центробежной термоударной обработки гидроксида алюминия в насыщенных парах воды при повышенной температуре с последующим принудительным охлаждением полученного продукта.

3. Катализатор по п.2, отличающийся тем, что в качестве исходного гидроксида алюминия используют гидраргиллит (гиббсит) или байерит.

4. Катализатор по п.1, отличающийся тем, что он содержит, мас.%: 8,0-23,0 оксида хрома Cr 2О3; 0,05-5,0 оксида щелочного металла М2О; 0,1-5,0 оксида переходного металла М'O2, остальное носитель.

5. Катализатор по п.1, отличающийся тем, что щелочной металл М выбран из ряда: Li, Na, К, Rb, Cs.

6. Катализатор по п.1, отличающийся тем, что переходной металл М' выбран из ряда: Zr и/или Се, и/или U.

7. Катализатор по п.1, отличающийся тем, что он представляет собой микросферы со следующим распределением частиц по размерам, мас.%.: <50 мкм - <30; 50-80 мкм - 20-30; 80-100 мкм - 15-25; 100-120 мкм - 15-20; 120-140 мкм - 10-15; >140 мкм <5.

8. Катализатор по п.1, отличающийся тем, что активным компонентом является микродисперсный с размером частиц, равным 2-5 нм, оксид катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322070/945.gif" BORDER="0" ALIGN="absmiddle"> -Cr2О3 на твердом растворе Cr3+ в катализатор, способ его получения и процесс дегидрирования c<sub pos= 3-c5-парафиновых углеводородов в олефины, патент № 2322290" SRC="/images/patents/143/2322053/947.gif" BORDER="0" ALIGN="absmiddle"> -Al2О3 состава Al(21,33-х)CrхО 32, где x=0,1-2,67, кубической структуры.

9. Способ приготовления катализатора дегидрирования С35-парафиновых углеводородов в олефины, содержащего оксид хрома, оксид щелочного металла, оксиды переходных металлов и носитель, нанесением соединений активных компонентов и модифицирующих добавок на носитель, сушкой и прокаливанием, отличающийся тем, что в качестве носителя используют кислородсодержащее соединение алюминия общей формулы Al2O 3-х(ОН)х*nH2 O, где х=0-0,28, n=0,03-1,8, состоящее из наноструктурированных первичных частиц размером 2-5 нм и характеризующееся разупорядоченной/дефектной слоистой структурой, близкой к структуре байерита.

10. Способ по п.9, отличающийся тем, что кислородсодержащее соединение алюминия общей формулы Al2O 3-х(ОН)х·nH2 O получают в неравновесных условиях путем быстрой центробежной термоударной обработки гидроксида алюминия в насыщенных парах воды, при повышенной температуре с последующим принудительным охлаждением и с последующей гидратацией на стадии пропитки соединениями активных компонентов и модифицирующих добавок.

11. Способ по п.10, отличающийся тем, что в качестве исходного гидроксида алюминия используют гидраргиллит (гиббсит) или байерит.

12. Способ по п.10, отличающийся тем, что гидратацию кислородсодержащего соединения алюминия проводят при температуре 40-100°С в закрытой емкости при постоянном перемешивании в присутствии паров воды.

13. Способ по любому из пп.9 и 10, отличающийся тем, что тепло, выделяющееся при гидратации кислородсодержащего соединения алюминия пропиточным раствором, используют для последующей сушки получаемого катализатора при температуре 80-100°С в открытой емкости при постоянном перемешивании.

14. Способ по п.9, отличающийся тем, что в качестве соединений активных компонентов, содержащих хром, используют такие как, хромовая кислота, хроматы и/или бихроматы щелочного металла М2CrO 4 или M2Cr2 O7.

15. Способ по п.9, отличающийся тем, что в качестве хроматов или бихроматов щелочных металлов используют хроматы и/или бихроматы щелочных металлов, выбранных из ряда: Li, Na, К, Rb, Cs.

16. Способ по п.9, отличающийся тем, что в качестве соединений, содержащих модифицирующие добавки, используют нитраты, хлориды, ацетаты или сульфаты катиона М'O 2+, переходный металл М' выбран из ряда: Zr, Ce, U.

17. Способ по п.10, отличающийся тем, что для гидратации кислородсодержащего соединения алюминия к 100 весовым частям продукта центробежной термоударной обработкой гидроксида алюминия добавляют 18-25 весовых частей раствора, содержащего 14-20 частей воды, хромовую кислоту, хромат и/или бихромат щелочного металла М2 CrO4 или М2Cr 2О7, нитрат, хлорид, ацетат, или сульфат катиона М'O2+

18. Процесс дегидрирования С35 -парафиновых углеводородов в олефины, отличающийся тем, что в качестве катализатора используют катализатор по пп.1-8, или приготовленный по пп.9-17.

19. Процесс по п.18, отличающийся тем, что его проводят в кипящем слое катализатора при циркуляции катализатора по контуру реактор дегидрирования - реактор регенерации.

20. Процесс по любому из пп.18 и 19, отличающийся тем, что его температура дегидрирования 520-610°С, температура регенерации 560-650°С, объемная скорость подачи сырья 400-800 ч -1, время дегидрирования 10-30 мин, время регенерации 5-30 мин, время продувки инертным газом между стадиями дегидрирование - регенерация дегидрирование 3-15 мин.


Скачать патент РФ Официальная публикация
патента РФ № 2322290

patent-2322290.pdf
Патентный поиск по классам МПК-8:

Класс B01J23/26 хром

Патенты РФ в классе B01J23/26:
каталитическая композиция и способ олигомеризации этилена -  патент 2525917 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
система и способ активации катализаторов -  патент 2515614 (20.05.2014)
способ получения олефиновых углеводородов c3-c5 и катализатор для его осуществления -  патент 2514426 (27.04.2014)
высокопористые пенокерамики как носители катализатора для дегидрирования алканов -  патент 2486007 (27.06.2013)
смешанные оксидные катализаторы для каталитического окисления в газовой фазе -  патент 2480280 (27.04.2013)
способ получения 1,1,1-трифтор-2,3-дихлорпропана -  патент 2476413 (27.02.2013)
способ выделения продуктов олигомеризации олефинов и разложения остатков катализатора олигомеризации -  патент 2471762 (10.01.2013)
способ получения диметилсульфида -  патент 2457029 (27.07.2012)
способ активации катализатора для получения фторсодержащих углеводородов -  патент 2449832 (10.05.2012)

Класс B01J23/10 редкоземельных элементов

Патенты РФ в классе B01J23/10:
способ получения этилена -  патент 2528829 (20.09.2014)
катализатор для получения этилена и способ получения этилена с использованием этого катализатора -  патент 2523013 (20.07.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
алкилирование для получения моющих средств с использованием катализатора, подвергнутого обмену с редкоземельным элементом -  патент 2510639 (10.04.2014)
композиция на основе оксида церия и оксида циркония с особой пористостью, способ получения и применение в катализе -  патент 2509725 (20.03.2014)
катализаторы окисления для дизельных двигателей на основе неблагородных металлов и модифицированные неблагородными металлами -  патент 2506996 (20.02.2014)
удерживающие nox материалы и ловушки, устойчивые к термическому старению -  патент 2504431 (20.01.2014)
система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления -  патент 2497577 (10.11.2013)
способ извлечения церия -  патент 2495147 (10.10.2013)

Класс B01J23/04 щелочные металлы

Патенты РФ в классе B01J23/04:
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ определения устойчивости катализатора для дегидрирования алкилароматических углеводородов -  патент 2508163 (27.02.2014)
способ получения катализатора -  патент 2498852 (20.11.2013)
катализатор для применения в высокотемпературной реакции сдвига и способ обогащения смеси синтез-газа водородом или монооксидом углерода -  патент 2498851 (20.11.2013)
катализатор дегидрирования метанола, используемый для получения метилформиата, и способ получения метилформиата -  патент 2489208 (10.08.2013)
способ получения катализатора для очистки воды от загрязнения углеводородами -  патент 2479349 (20.04.2013)
катализатор и способ конвертации природного газа в высокоуглеродистые соединения -  патент 2478426 (10.04.2013)
способ получения титанатного фотокатализатора, активного в видимой области спектра -  патент 2466791 (20.11.2012)
материал для покрытия с каталитической активностью и применение материала покрытия -  патент 2466163 (10.11.2012)
катализатор дегидрирования, способ его получения и способ получения олефиновых углеводородов c2-c5 с использованием этого катализатора -  патент 2463109 (10.10.2012)

Класс B01J21/02 бор или алюминий; их оксиды или гидроксиды

Патенты РФ в классе B01J21/02:
катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, и способ его получения -  патент 2524217 (27.07.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2520218 (20.06.2014)
цеолитсодержащий катализатор депарафинизации масляных фракций -  патент 2518468 (10.06.2014)
способ приготовления катализатора для получения синтез-газа -  патент 2493912 (27.09.2013)
способ получения катализатора гидроочистки дизельного топлива -  патент 2491123 (27.08.2013)
катализатор селективного гидрирования и способ его получения -  патент 2490060 (20.08.2013)
способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации -  патент 2486957 (10.07.2013)
способ получения циклогексана и его производных -  патент 2486167 (27.06.2013)
катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья -  патент 2478428 (10.04.2013)
катализатор, способ его приготовления и способ получения -пиколина -  патент 2474473 (10.02.2013)

Класс B01J35/02 твердые

Патенты РФ в классе B01J35/02:
непрерывный способ изготовления геометрических формованных изделий из катализатора к -  патент 2507001 (20.02.2014)
каталитический элемент для осуществления гетерогенно-каталитических реакций -  патент 2489209 (10.08.2013)
формованные гетерогенные катализаторы -  патент 2488444 (27.07.2013)
формованные гетерогенные катализаторы -  патент 2488443 (27.07.2013)
формованные гетерогенные катализаторы -  патент 2487757 (20.07.2013)
способ засыпки продольного участка контактной трубы -  патент 2486009 (27.06.2013)
cпособ получения фильтрующе-сорбирующего материала с фотокаталитическими свойствами -  патент 2482912 (27.05.2013)
способ гидродесульфуризации потока углеводородов -  патент 2480511 (27.04.2013)
способ каталитического превращения 2-гидрокси-4-метилтиобутаннитрила (гмтбн) в 2-гидрокси-4-метилтиобутанамид (гмтба) -  патент 2479574 (20.04.2013)
катализатор нейтрализации отработанных газов и способ его получения -  патент 2477176 (10.03.2013)

Класс B01J37/02 пропитывание, покрытие или осаждение

Патенты РФ в классе B01J37/02:
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения -  патент 2528389 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления -  патент 2523015 (20.07.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)

Класс C07C5/333 каталитические способы

Патенты РФ в классе C07C5/333:
технологическая схема нового реактора дегидрирования пропана до пропилена -  патент 2523537 (20.07.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
способ получения олефиновых углеводородов c3-c5 и катализатор для его осуществления -  патент 2514426 (27.04.2014)
способ получения дегидрированных углеводородных соединений -  патент 2508282 (27.02.2014)
способ определения устойчивости катализатора для дегидрирования алкилароматических углеводородов -  патент 2508163 (27.02.2014)
способ дегидрирования углеводородов -  патент 2505516 (27.01.2014)
катализатор для непрерывного окислительного дегидрирования этана и способ непрерывного окислительного дегидрирования этана с его использованием -  патент 2488440 (27.07.2013)
способ управления активностью катализатора процесса дегидрирования высших н-парафинов -  патент 2486168 (27.06.2013)
высокопористые пенокерамики как носители катализатора для дегидрирования алканов -  патент 2486007 (27.06.2013)
регенерация катализаторов дегидрирования алканов -  патент 2477265 (10.03.2013)

Класс B82B1/00 Наноструктуры

Патенты РФ в классе B82B1/00:
многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)


Наверх