способ ионизационной сепарации дисперсных материалов и устройство для его осуществления

Классы МПК:B03C7/02 сепараторы 
Автор(ы):, , ,
Патентообладатель(и):Ладыченко Элина Леонидовна (RU),
Хорошилов Владимир Николаевич (RU),
Чопоров Василий Егорович (RU),
Чуркин Андрей Андреевич (RU)
Приоритеты:
подача заявки:
2007-05-15
публикация патента:

Изобретение относится к сепарации сыпучих материалов и может быть использовано в горно-обогатительной промышленности для разделения дисперсных материалов, а также в строительной, химической и других отраслях промышленности. Способ ионизационной сепарации дисперсных материалов включает подачу дисперсного материала на сушку в восходящем потоке нагретого воздуха перед измельчением, создание параллельно потоку нагретого воздуха восходящего потока воздуха, обогащенного отрицательными ионами кислорода воздуха, смешивание обоих восходящих потоков воздуха с потоком дисперсного материала, перевод во взвешенное состояние материала и зарядка частиц пылевоздушной смеси отрицательным зарядом, подачу пылевоздушной смеси в, по меньшей мере, две зоны действия вертикального постоянного электрического поля и отделение от пылевоздушной смеси, по меньшей мере, двух фракций частиц дисперсного материала или двух различающихся по химическому составу материалов. Способ осуществляется с помощью устройства для ионизационной сепарации дисперсных материалов, в котором камера ионизации снабжена, по меньшей мере, одним источником альфа-частиц и, по меньшей мере, одним сетчатым электродом, подключенным к отрицательному полюсу источника постоянного напряжения. Камера ионизации воздуха и газоход теплогенератора расположены ниже измельчительного аппарата. Каждая из ступеней сепарации в продуктопроводе снабжена верхним горизонтальным электродом, расположенным на диэлектрической вставке в верхней стенке продуктопровода, нижним горизонтальным сетчатым электродом, расположенным в отверстии нижней стенки продуктопровода непосредственно над бункером и отделенным от стенки продуктопровода диэлектрической рамкой. Передняя по ходу потока стенка бункера устроена под углом не менее 45° к вертикальной оси. Противоположная стенка бункера устроена вертикально и снабжена рукавом продуктопровода, расположенным под углом не менее 45° к вертикальной оси и соединенным с продуктопроводом. Рукав на входе со стороны бункера снабжен сеткой с заданной величиной ячейки, подключенной к отрицательному полюсу источника постоянного напряжения. Продуктопровод снабжен вертикальной сеткой, расположенной в плоскости вертикальной стенки бункера, при этом вертикальные сетки снабжены электромагнитными вибраторами. Технический результат - увеличение производительности сепарации с одновременным уменьшением размеров устройства, а также повышение надежности работы устройства. 2 н. и 6 з.п. ф-лы, 4 ил. способ ионизационной сепарации дисперсных материалов и устройство   для его осуществления, патент № 2321463

способ ионизационной сепарации дисперсных материалов и устройство   для его осуществления, патент № 2321463 способ ионизационной сепарации дисперсных материалов и устройство   для его осуществления, патент № 2321463 способ ионизационной сепарации дисперсных материалов и устройство   для его осуществления, патент № 2321463 способ ионизационной сепарации дисперсных материалов и устройство   для его осуществления, патент № 2321463

Формула изобретения

1. Способ ионизационной сепарации дисперсных материалов, заключающийся в том, что дисперсный материал подают на сушку в восходящем потоке нагретого воздуха, размельчают, переводят во взвешенное состояние, создавая пылевоздушную смесь, заряжают ее частицы, подают в продуктопровод, воздействуют на нее постоянным электрическим полем, отделяют частицы заданной фракции от потока пылевоздушной смеси, собирают их, а перед выбросом смеси в атмосферу очищают ее от оставшихся частиц дисперсного материала, отличающийся тем, что перед измельчением дисперсного материала параллельно потоку нагретого воздуха создают восходящий поток воздуха, обогащенного отрицательными ионами кислорода воздуха, смешивают его с потоком дисперсного материала, заряжают частицы пылевоздушной смеси отрицательным зарядом, подают пылевоздушную смесь в, по меньшей мере, две зоны действия вертикального постоянного электрического поля и отделяют от пылевоздушной смеси, по меньшей мере, две фракции частиц дисперсного материала или два различающихся по химическому составу материала.

2. Способ ионизационной сепарации дисперсных материалов по п.1, отличающийся тем, что воздух обогащают отрицательными ионами кислорода путем воздействия на воздух альфа-частицами, нейтрализации положительных ионов, создания потока свободных электронов и ионизации воздуха с образованием отрицательных ионов воздуха, при этом в воздухе создают такое количество отрицательных ионов воздуха, которое необходимо для предотвращения образования статического электричества на частицах дисперсного материала по всему ходу потока пылевоздушной смеси и для зарядки частиц дисперсного материала отрицательными электрическими зарядами для сепарации частиц дисперсного материала.

3. Способ ионизационной сепарации дисперсных материалов по п.1, отличающийся тем, что по ходу движения потока заряженной пылевоздушной смеси создают столько зон воздействия на пылевоздушную смесь внешним постоянным электрическим полем, сколько фракций дисперсного материала нужно отделить из пылевоздушного потока или на сколько разных по химическому составу материалов нужно разделить пылевоздушный поток.

4. Способ ионизационной сепарации дисперсных материалов по пп.3 и 4, отличающийся тем, что после воздействия вертикального внешнего постоянного электрического поля на заряженную пылевоздушную смесь, заряженные частицы нейтрализуют на сетчатом электроде с постоянным электрическим потенциалом и отбирают заданные фракции дисперсного материала.

5. Устройство ионизационной сепарации дисперсных материалов, состоящее из параллельно соединенных между собой камеры ионизации и газохода теплогенератора, и последовательно соединенных с ними измельчительного аппарата, сушильного аппарата, шнекового питателя и продуктопровода, с устроенными в нем, по меньшей мере, двумя последовательно расположенными ступенями сепарации с установленным в каждой из них, по меньшей мере, одним электродом, расположенным вдоль потока пылевоздушной смеси, бункеров, контейнеров, мокрого скруббера и дымососа с возможностью регулирования скорости потока воздуха, отличающееся тем, что камера ионизации снабжена, по меньшей мере, одним источником альфа-частиц и, по меньшей мере, одним сетчатым электродом, подключенным к отрицательному полюсу источника постоянного напряжения, камера ионизации воздуха и газоход теплогенератора расположены ниже измельчительного аппарата, а каждая из ступеней сепарации в продуктопроводе снабжена верхним горизонтальным электродом, расположенным на диэлектрической вставке в верхней стенке продуктопровода, нижним горизонтальным сетчатым электродом, расположенным в отверстии нижней стенки продуктопровода непосредственно над бункером и отделенным от стенки продуктопровода диэлектрической рамкой, при этом передняя по ходу потока стенка бункера устроена под углом не менее 45° к вертикальной оси, а противоположная стенка бункера устроена вертикально и снабжена рукавом продуктопровода, расположенным под углом не менее 45° к вертикальной оси и соединенным с продуктопроводом, при этом рукав на входе со стороны бункера снабжен сеткой с заданной величиной ячейки, подключенной к отрицательному полюсу источника постоянного напряжения, а продуктопровод снабжен вертикальной сеткой, расположенной в плоскости вертикальной стенки бункера, при этом вертикальные сетки снабжены электромагнитными вибраторами.

6. Устройство ионизационной сепарации дисперсных материалов по п.5, отличающееся тем, что площадь сечения рукава продуктопровода, соединяющего бункер с продуктопроводом, по меньшей мере, в два раза меньше площади сечения продуктопровода.

7. Устройство ионизационной сепарации дисперсных материалов по п.5, отличающееся тем, что длина верхнего горизонтального электрода в направлении потока пылевоздушной смеси превышает длину нижнего сетчатого электрода не менее чем на высоту продуктопровода, оба электрода заканчиваются в одной вертикальной плоскости, при этом на верхний горизонтальный электрод подается от источника питания постоянное напряжение отрицательной полярности, а на нижний горизонтальный сетчатый электрод подается от источника питания постоянное напряжение положительной полярности.

8. Устройство ионизационной сепарации дисперсных материалов по п.5, отличающееся тем, что выходное напряжение источников постоянного напряжения определяется по формуле

U=2·m·V2·h·d/(e·l 2),

где m - средняя масса частицы отделяемой фракции дисперсного материала, кг;

V - скорость потока пылевоздушной смеси, м/с;

h - средняя высота частицы отделяемой фракции дисперсного материала в потоке пылевоздушной смеси над нижним горизонтальным сетчатым электродом, м;

d - высота продуктопровода, м;

е - величина среднего электрического заряда частицы отделяемой фракции дисперсного материала, кулон;

l - длина верхнего горизонтального электрода, м.

Описание изобретения к патенту

Предложение относится к сепарации сыпучих материалов, а именно к разделению или сортировке поликомпонентных дисперсных материалов по размеру или вещественному составу, таких как песок, вопластонит, кварц-топазовые породы, мраморная мука, тальк, мел в электрических и гравитационных полях, и может быть использовано в горно-обогатительных процессах для обогащения полезных ископаемых, приготовлении сухих смесей и подготовке порошков для последующего использования в строительной, химической и других отраслях промышленности.

Известен способ измельчения и сепарации, осуществляемый в измельчительно-сепарационной установке [1], включающей последовательно соединенные между собой общей воздушной системой вертикально расположенный вихревой измельчительно-сушильный аппарат, снабженный колесом-активатором, ложной стенкой с жалюзи, соединенными с теплогенератором отдельными газоходами, питателем, подвижным конусом, размещенным в верхней его части, овальным телом, закрепленным в центре, теплогенератор, воздухораспределитель, дьмосос и аспирационную систему, при этом колесо-активатор вихревого измельчительно-сушильного аппарата выполнено в виде турбины, на направляющих лопастях которой установлены била, отдельные газоходы ложной стенки и турбины выполнены в виде единой улитки, верхний конец овального тела размещен над загрузочным питателем, а аспирационная система установки включает от двух до четырех последовательно расположенных ступеней пылеосаждения. Первые две ступени аспирационной системы представляют собою инерционные пылеуловители, выполненные с возможностью регулирования скоростей потока в них. Третья ступень аспирационной системы пылеосаждения выполнена в виде системы батарейных циклонов. Установка содержит мокрый скруббер, размещенный между последней ступенью воздушно-сухого пылеосаждения и дымососом.

Недостатками способа являются снижение производительности, частое обслуживание аппаратов и высокая вероятность выхода измельчительного аппарата из строя из-за обрастания рабочих поверхностей аппаратов и стенок воздушно-аспирационной системы устройства перерабатываемым материалом вследствие электризации его частиц при трении о стенки воздушно-аспирационной системы и между собой.

Известны способы сепарации дисперсных материалов [2], [3], [4], [5], включающие электризацию частиц материала посредством воздействия электрического разряда, в частности коронного, перед сепарацией материала. Основным недостатком этих устройств является низкая эффективность и производительность, вследствие того, что при коронном разряде заряжаются только те частицы, которые находятся на силовых линиях электрического поля, при зарядке частиц плоскими электродами заряжаются только те частицы, которые находятся в приэлектродном пространстве, а электроды обрастают материалом.

Наиболее близким по совокупности признаков является способ сепарации и классификации волокон и частиц, переносимых газом, подвергаемых ионизации и электродной сепарации [6], включающий пропускание газа, содержащего частицы, через ионизационную камеру и камеру сепарации, зарядку частиц в камере ионизации коронным разрядом, воздействие на них в камере сепарации электростатическим полем, по меньшей мере, одного электрода, при этом частицы сепарируются в отдельных зонах, каждая из которых содержит, по меньшей мере, один электрод, расположенный вдоль течения газа. При этом частицы в камере сепарации осаждаются на электрически заряженные пластины, выступающие в роли электродов, а поток газа после сепарации подвергается фильтрации с целью удаления оставшихся частиц. Способ осуществляется в устройстве, включающем канал отсева с патрубком подачи газа и выхлопным патрубком, при этом канал отсева, камера ионизации и устройство электростатической сепарации соединены последовательно, вдоль продольной оси патрубка подачи газа, при этом камера сепарация, расположенная после канала отсева, снабжена пластинами конденсатора, перед ионизационной камерой и между входным патрубком для подачи газа внутри или снаружи канала отсева расположен сепаратор для крупных фракций, после камеры сепарации, но до патрубка выхлопа газа установлен сепаратор для пылеватых (мелких) частиц, а перед камерой ионизации и после патрубка подачи газа, перед или после канала грубого отсева, расположено устройство подачи дисперсионного материала в поток газа.

Основными недостатками способа и устройства является низкая производительность устройства вследствие использования коронного разряда, который заряжает только часть частиц, попадающих на разряженные силовые линии электрического поля, низкая надежность устройства из-за использования электродов для осаждения сепарируемых материалов и обрастания электродов и каналов устройства материалом, высокий расход электроэнергии из-за применения коронного разряда.

Задачей, решаемой изобретением, является расширение области применения способа и устройства, повышение надежности работы аппаратов устройства, увеличение производительности сепарации с одновременным уменьшением размеров устройства. Поставленная задача решается достижением следующих технических результатов:

предотвращение образования объемного статического электрического заряда в дисперсном материале, что предотвращает обрастание поверхностей и деталей устройства частицами материала, обеспечение объемного отрицательного заряда в дисперсном материале и эффективное разделение материала на фракции по размерам или на разные вещества по химическому составу, существенное уменьшение размеров устройства.

Указанные технические результаты достигают за счет того, что ионизируют поток воздуха, нагревают его, подают в него дисперсный материал, размельчают и сушат дисперсный материал, создают поток пылевоздушной смеси, содержащий заряженные частицы дисперсного материала, направляют материал в продуктопровод, воздействуют на дисперсный материал постоянным электрическим полем, отделяют заряженные частицы заданной фракции от пылевоздушного потока, очищают поток пылевоздушной смеси от оставшихся неотделенных частиц, при этом перед измельчением дисперсного материала создают дополнительный поток воздуха, который подвергают воздействию альфа-излучения, после чего нейтрализуют содержащиеся в этом потоке воздухе положительные ионы, создают поток свободных электронов и отрицательных ионов воздуха, смешивают его с потоком нагретого воздуха, создавая восходящий поток ионизированного воздуха, смешивают восходящий поток ионизированного воздуха с потоком дисперсного материала, создавая отрицательно заряженную пылевоздушную смесь, подают пылевоздушную смесь, по меньшей мере, в две зоны действия вертикального постоянного электрического поля и отделяют от пылевоздушной смеси, по меньшей мере, две фракции частиц дисперсного материала или два различающихся по химическому составу материала.

Кроме этого, посредством альфа-излучения в воздухе создают такое количество свободных электронов и отрицательных ионов воздуха, которое необходимо для предотвращения образования статического электричества на частицах дисперсного материала по всему ходу потока пылевоздушной смеси и для зарядки частиц дисперсного материала отрицательными электрическими зарядами для сепарации частиц дисперсного материала.

За счет ионизации воздуха перед подачей его на измельчительный аппарат обеспечивается предотвращение статического электричества на частицах измельчаемого материала и соответственно предотвращается обрастание измельчительного оборудования материалом и повышается надежность его работы.

Более того, за счет ионизации воздуха и создания облака свободных электронов обеспечивается объемная ионизация пылевоздушной смеси, при которой все частицы материала получают отрицательный заряд. За счет этого действующее в зонах сепарации электрическое поле позволяет отделять максимальное количество частиц заданной фракции из общего объема пылевоздушной смеси. Это повышает производительность устройства.

Кроме этого, по ходу движения потока заряженной пылевоздушной смеси создают столько зон воздействия на пылевоздушную смесь внешним постоянным электрическим полем, сколько фракций дисперсного материала нужно отделить из пылевоздушного потока или на сколько разных по химическому составу материалов нужно разделить пылевоздушный поток.

Кроме этого, после воздействия вертикального внешнего постоянного электрического поля на заряженную пылевоздушную смесь заряженные частицы нейтрализуют на сетчатом электроде с постоянным электрическим потенциалом и отбирают заданные фракции дисперсного материала.

Снятие заряда с частиц обеспечивает надежную работу бункера и контейнера для сбора заданной фракции материала, т.к. материал попадает в них без заряда.

Также предлагается устройство ионизационной сепарации дисперсных материалов, состоящее из последовательно соединенных между собой камеры ионизации, газохода теплогенератора, измельчительного аппарата, сушильного аппарата, шнекового питателя дисперсного материала и продуктопровода с устроенными в нем, по меньшей мере, двумя последовательно расположенными ступенями сепарации с установленным в каждой из них, по меньшей мере, одним электродом, расположенным вдоль потока пылевоздушной смеси, бункеров, контейнеров, мокрого скруббера и дымососа с возможностью регулирования скорости потока воздуха, при этом камера ионизации снабжена, по меньшей мере, одним источником альфа-частиц и, по меньшей мере, одним сетчатым электродом, подключенным к отрицательному полюсу источника постоянного напряжения, камера ионизации воздуха и газоход теплогенератора расположены ниже измельчительного аппарата, а каждая из ступеней сепарации снабжена верхним горизонтальным электродом, расположенным на диэлектрической вставке в верхней стенке продуктопровода, нижним горизонтальным сетчатым электродом, расположенным в отверстии нижней стенки продуктопровода непосредственно над бункером и отделенным от стенки продуктопровода диэлектрической рамкой, при этом передняя по ходу потока стенка бункера устроена под углом не менее 45° к вертикальной оси, а противоположная стенка бункера устроена вертикально и снабжена рукавом продуктопровода, расположенным под углом не менее 45° к вертикальной оси и соединенным с продуктопроводом, при этом рукав на входе со стороны бункера снабжен сеткой с заданной величиной ячейки, а продуктопровод снабжен вертикальной сеткой, расположенной в плоскости вертикальной стенки бункера, при этом вертикальные сетки снабжены электромагнитными вибраторами.

Кроме этого, площадь сечения рукава продуктопровода, соединяющего бункер с продуктопроводом, по меньшей мере, в два раза меньше площади сечения продуктопровода.

Кроме этого, длина верхнего горизонтального электрода в направлении потока пылевоздушной смеси превышает длину нижнего сетчатого электрода не менее чем на высоту продуктопровода, оба электрода заканчиваются в одной вертикальной плоскости, при этом на верхний горизонтальный электрод подается от источника питания постоянное напряжение отрицательной полярности, а на нижний горизонтальный сетчатый электрод подается от источника питания постоянное напряжение положительной полярности.

Кроме этого, выходное напряжение источников постоянного напряжения определяется по формуле:

U=2·m·V2·h·d/(e·l 2),

где m - средняя масса частицы отделяемой фракции дисперсного материала, кг;

V - скорость потока пылевоздушной смеси, м/с;

h - средняя высота частицы отделяемой фракции дисперсного материала в потоке пылевоздушной смеси над нижним горизонтальным сетчатым электродом, м;

d - высота продуктопровода, м;

е - величина среднего электрического заряда частицы отделяемой фракции дисперсного материала, кулон;

l - длина верхнего горизонтального электрода, м.

Существо заявляемых способа и устройства поясняется на Фиг.1, 2, 3 и 4.

Шнековый питатель 1 сырья снабжен бункером для подачи сырья и соединен с сушильным аппаратом 2, который представляет из себя камеру смешения горячего вертикального восходящего потока воздуха и нисходящего потока дисперсного материала. Ниже сушильного аппарата 2 расположен измельчительный аппарат 3, который может представлять из себя колесо-активатор, снабженный лопатками для разбивания и размельчения материала. Ниже измельчительного аппарата 3 расположен газоход теплогенератора 4, через который подается нагретый воздух с температурой от 100 до 1000°С. Ниже газохода теплогенератора 4 расположена камера ионизации 6, в которую поступает воздух через решетку воздухозабора 5. Камера ионизации, газоход теплогенератора и сушильный аппарат соединены единой аспирационной системой, в которой обеспечивается пневмотранспорт дисперсного материала за счет создания отрицательного давления дымососом 11. Пневмотранспорт дисперсного материала осуществляется по продуктопроводу, в котором устроена первая ступень сепарации 7, вторая ступень сепарации 8, также могут быть устроены дополнительно n ступеней сепарации 9. Последняя ступень сепарации соединена с мокрым скруббером 10.

Камера ионизации представляет собой стальной короб с установленным в нем, по меньшей мере, одним источником альфа-частиц 17. Источник альфа-частиц 17 установлен на диэлектрической вставке. На выходе камеры ионизации установлен сетчатый электрод 18, который представляет из себя стальную сетку с заданной величиной ячейки. Сетчатый электрод подключен к отрицательному полюсу источника постоянного напряжения 12. Корпус камеры ионизации, корпус газохода и продуктопровода заземлены с помощью устройств заземления 22.

Каждая из секций сепарации представляет собой диэлектрическую вставку с электродом 23, размещенную в верхней части продуктопровода, непосредственно над нижним сетчатым электродом 25. Верхний электрод соединен с отрицательным полюсом источника постоянного напряжения 12, а нижний сетчатый электрод соединен с положительным полюсом источника постоянного напряжения 13. Непосредственно под нижним сетчатым электродом находится бункер 26. Под бункером расположен контейнер 27 для сбора отобранной фракции. Бункер снабжен рукавом продуктопровода 30, отделенным от бункера стальной сеткой 29 с размером ячейки, меньшим размера отделяемый в секции сепарации фракции. В продуктопроводе в плоскости вертикальной стенки бункера расположена сетка 28 с размером ячейки, меньшим размера отделяемый в секции сепарации фракции. Каждая из сеток 28 и 29 снабжена электромагнитным вибратором 32.

Устройство работает следующим образом. Шнековый питатель сырья 1 подает дисперсный материал на сушильный аппарат 2 и затем на измельчительный аппарат 3. Снизу на измельчительный аппарат поступает горячий воздух 15 из газохода теплогенератора 4. Поток горячего воздуха 15 смешивается с поступающим через воздухозабор 5 потоком воздуха 16, обрабатываемым в камере ионизации 6. При подаче через камеру ионизации альфа-частицы, испускаемые, по меньшей мере, одним источником альфа-частиц 17, бомбардируют молекулы воздуха, выбивая из них электроны. При этом образуются положительные ионы молекул воздуха и свободные электроны. При выходе из камеры ионизации 6 положительные ионы молекул воздуха восстанавливаются на сетчатом электроде 18, подключенном к отрицательному полюсу источника постоянного тока 12. Таким образом, из камеры ионизации выходит воздух, обогащенный свободными электронами и отрицательными ионами 19. При смешивании горячего воздуха и ионизированного воздуха создается поток горячего ионизированного воздуха 20, который, смешиваясь с измельченным дисперсным материалом 14, сушит его и образует пылевоздушную смесь 21, в которой отрицательные ионы и электроны присоединяются к частицам дисперсного материала, создавая объемный отрицательный заряд в пылевоздушной смеси. Эта смесь поступает по продуктопроводу на первую ступень сепарации 7, вторую ступень сепарации 8 и т.д. до n-ой ступени сепарации. С целью очистки пылевоздушного потока от неотобранной тонкой пыли воздух направляется в мокрый скруббер 10. Поток воздуха создается дымососом 11. Для питания электродов камеры ионизации и ступеней сепарации используются источник постоянного напряжения отрицательной полярности 12 и источник постоянного напряжения положительной полярности 13. Продуктопровод имеет заземление 22. При движению по продуктопроводу частицы дисперсного материала испытают трение о стенки продуктопровода и о друг друга, стремясь получить положительный заряд. Однако имеющийся на частицах отрицательный заряд при трении стекает с частиц и тем самым предотвращает образование положительного объемного заряда в дисперсной пылевоздушной смеси.

При проходе через секцию сепарации на отрицательно заряженные частицы пылевоздушной смеси начинает действовать вертикальное электрическое поле, образованное электродом 23, закрепленным на диэлектрической вставке 24. На электрод 23 подается постоянное напряжение отрицательной полярности от источника напряжения 12 и сетчатым электродом 25, на который подается постоянное напряжение положительной полярности от источника тока 13. Силы вертикального электрического поля в комбинации с гравитационными силами отклоняют отрицательно заряженные частицы вниз, которые притягиваются к положительно заряженному нижнему сетчатому электроду 25. При этом при прохождении первой секции сепарации большие силы действуют на более крупную фракцию дисперсного материала, поэтому на сетчатый электрод попадают частицы крупной фракции. На нижнем сетчатом электроде 25 отрицательно заряженные частицы нейтрализуются, подпадают в бункер 26, а из него поток частиц 31 попадает в накопительный контейнер 27 с отверстием для выгрузки материала. При этом материал более мелкой фракции засасывается в рукав 30 продуктопровода, а сетка 28 задерживает частицы отбираемой в данной секции фракции. Сетка 28 снабжена электромагнитным вибратором 32, который подключен к источнику переменного напряжения, что обеспечивает постоянную очистку сетки. Кроме того, частицы отбираемой фракции задерживаются сеткой 29, установленной в одной плоскости с вертикальной стенкой бункера. Сетка 29 также снабжена электромагнитным вибратором 32, подключенным к источнику переменного напряжения. Частицы более мелкой фракции проходят через сетку 29 к следующей ступени сепарации.

На следующей ступени сепарации процесс повторяется для более мелкой фракции.

Имеется опыт промышленного применения способа и устройства для обогащения минерального сырья. В промышленном рабочем положении в условиях без ионизации в установке с продуктом минеральное сырье подвергается мощной электризации положительным зарядом, притягивающимся к стенкам металлического воздухопродуктопровода, отчего заряженные частицы сырья осаждаются на стенки. Это приводит к низкой производительности разделения сырья на фракции, обрастанию установки минеральным сырьем и быстрому выходу установки из строя. Для испытаний способа и устройства измельчительно-сепарационная установка, включающая измельчительно-сушильный аппарат, теплогенератор, воздухораспределитель, дымосос, аспирационную систему, инерционные пылеуловители, мокрый скруббер, была оборудована ионизационной камерой на участке до газохода теплогенератора. В ионизационной камеры было установлено 6 источников альфа-частиц, каждый из них активностью 5 милликюри, что позволяло создать поток из 1,9·10 14 отрицательных ионов и смешивать его с потоком размельчаемого минерального сырья и распространять по всей длине воздухопродукторопровода промышленной установки. Образование потока отрицательных ионов в указанном количестве обеспечило предотвращение образования положительного заряда, оседания частиц минерального сырья на стенки аппаратов установки, а отрицательна электризация частиц минерального сырья обеспечила эффективное разделение его на 3 фракции в трех секциях воздухопродуктопровода, оборудованного нижними и верхними горизонтальными электродами.

Источники информации

1. Патент РФ №2194577, опубликован 20.12.2002.

2. Патент РФ №2064345, опубликован 27.07.1996.

3. Патент РФ №2024319, опубликован 15.12.1994.

4. Патент РФ №2054333, опубликован 20.02.1996.

5. Патент Великобритании №GB 1107574, опубликован 27.03.1968.

6. Патент ФРГ №DE 10162053, опубликован 26.06.2003.

Класс B03C7/02 сепараторы 

криоэлектросепаратор для разделения луковых овощей -  патент 2454898 (10.07.2012)
диэлектрический сепаратор зерновой смеси -  патент 2402383 (27.10.2010)
устройство и способ разделения частиц -  патент 2360741 (10.07.2009)
коронный электросепаратор -  патент 2351399 (10.04.2009)
электростатический сепаратор -  патент 2338597 (20.11.2008)
электромеханический сепаратор для сыпучих материалов -  патент 2329871 (27.07.2008)
электростатический сепаратор для отделения частиц твердых материалов, различающихся по их удельному весу -  патент 2273525 (10.04.2006)
способ разделения и обработки зерновых смесей -  патент 2254697 (27.06.2005)
диэлектрический сепаратор -  патент 2248247 (20.03.2005)
устройство для разделения и обработки зерновых смесей -  патент 2246193 (20.02.2005)
Наверх