способ повышения октанового числа бензинов

Классы МПК:C10G15/08 с помощью электрических средств или электромагнитных или механических колебаний
C10G32/02 с помощью электрических или магнитных средств
C10L1/02 на основе компонентов, включающих только углерод, водород и кислород 
Автор(ы):
Патентообладатель(и):Закрытое акционерное общество "РУТЭНИЯ" (RU)
Приоритеты:
подача заявки:
2006-09-01
публикация патента:

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для повышения детонационной стойкости моторных топлив, в частности бензинов. Способ повышения октанового числа бензинов включает воздействие на бензин электромагнитного излучения лазера, ускорение бензина при прохождении рабочей области, модуляцию излучения и преобразование бензина. В этом способе излучение лазера попадает в рабочую область оптического фильтра непосредственно через ускоряющийся бензин, проходящий сквозь оптический фильтр, где частично отражаясь от внутренней полупрозрачной и структурированной стенки фильтра, частично пройдя через нее, частично дифрагирует. Далее излучение, отразившись от внешней стенки фильтра, попадает на внутреннюю стенку, где оно опять частично отражается, частично проходит и частично дифрагирует. Далее это излучение интерферирует с первоначальным отраженным излучением и модулируется в ускоренном потоке бензина. Способ обеспечивает упрощение процесса повышения октанового числа бензина, позволяя сократить число циклов или вообще отказаться от цикличности и, при сохранении быстродействия, увеличить эффективность за счет более протяженной длины рабочей области. 3 ил. способ повышения октанового числа бензинов, патент № 2315801

способ повышения октанового числа бензинов, патент № 2315801 способ повышения октанового числа бензинов, патент № 2315801 способ повышения октанового числа бензинов, патент № 2315801 способ повышения октанового числа бензинов, патент № 2315801

Формула изобретения

Способ повышения октанового числа бензинов, включающий воздействие на бензин электромагнитного излучения лазера, отличающийся тем, что излучением лазера воздействуют непосредственно на бензин, проходящий с ускорением через рабочую область оптического фильтра, где оно частично отражается от внутренней полупрозрачной и структурированной стенки фильтра, частично пройдя через нее, частично дифрагируя, далее излучение, отразившись от внешней стенки фильтра, попадает на внутреннюю стенку, где оно опять частично отражается, частично проходит и частично дифрагирует, далее это излучение интерферирует с первоначальным отраженным излучением и модулируется в ускоренном потоке бензина.

Описание изобретения к патенту

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для повышения детонационной стойкости моторных топлив.

Известно, что чем более разветвлена структура углеводородов в бензинах и чем больше в них циклических соединений, тем выше их детонационная стойкость, которую характеризуют октановым числом - сравнением с характеристиками эталонной жидкости, смесью изооктана (2,2,4-триметилпентан) с н-гептаном.

Традиционные способы повышения детонационной стойкости (каталитический риформинг) [1] требуют либо громоздкого и дорогостоящего оборудования, либо наличия присадок, что и определяет повышенную стоимость высокооктановых топлив по сравнению с низкооктановыми.

Известен способ [2] обработки нефти и нефтепродуктов, заключающийся в воздействии на нефтепродукты ультразвуковым полем (частотой ˜1 МГц), мощностью от 0.1 до 150 кВт/см2. Такое воздействие создает за счет поглощения тепла в точках повышения давления при распространении волны, зоны повышенной температуры, в которых, в силу меньшей скорости теплопроводности по сравнению со звуковой, может происходить укорочение углеводородных цепочек. Такие изменения в углеводородном составе могут, в принципе, приводить к повышению детонационной стойкости, однако процесс слабо контролируем и, в основном, все же ведет к понижению вязкости нефти и нефтепродуктов. К тому же длительное использование ультразвукового генератора с такой выходной мощностью почти наверняка приведет к выходу из строя сопутствующего оборудования и небезопасно для персонала.

Известен также способ [3] повышения октанового числа прямогонных бензинов, заключающийся в воздействии на бензин с водным раствором спирта ступенчатой кавитацией. Принцип повышения октанового числа аналогичен предыдущему примеру - локальный разогрев, только источником локального повышения температуры является кавитация. Ультразвуковое воздействие на бензин с водным раствором спирта приводит к образованию кавитационных пузырьков, внутри которых, при высоких давлениях и температурах, могут осуществляться пиролитические реакции. Авторы предполагают контролировать процесс изменением ультразвукового поля, однако не приводят данных о результатах такой регуляции, как, впрочем, и о результатах применения такого способа. Способ предполагает довольно громоздкую схему работы, включающую рекуперативные теплообменники, холодильники, эжекторы и сепараторы. Собственно кавитатор представляет ультразвуковой генератор, в котором ультразвук создается за счет сверхвысоких скоростей вращения центробежного насоса со специальными насадками, требующего при эксплуатации особого внимания и мер предосторожности, существенно затрудняющих управление процессом изменения генерации режима кавитации. Ко всему прочему все упомянутые способы требуют значительных энергозатрат на производство единицы продукции, что не ведет к повышению их конкурентноспособности по сравнению с традиционными.

Наиболее близким по технической сущности и достигаемому эффекту является способ повышения октанового числа [4], который устраняет вышеуказанные недостатки и направлен на упрощение и ускорение процесса облагораживания бензинов. Способ заключается в воздействии на поток бензина излучением маломощного лазера, которое модулируется первым киральным объектом, затем поток бензина ускоряется перед попаданием в рабочую область второго кирального объекта, в которой бензин подвергается воздействию собственного спонтанного излучения, которое преобразовано вторым киральным объектом на частотах резонансного поглощения бензина, и, попадая обратно в поток бензина, вызывает молекулярную трансформацию углеводородного состава бензина, обеспечивая изомеризацию и увеличивая долю ароматики, повышая тем самым октановое число бензина. Достоинством способа является тот факт, что весь процесс происходит при комнатной температуре. К недостаткам указанного способа можно отнести сложную процедуру приготовления кристаллов, обладающих киральными свойствами в необходимом частотном диапазоне. Например, изготовление квазифрактальной дифракционной решетки, используемой для модуляции исходного излучения, требует сложной программы и высокоточного оборудования, что в результате приводит к большим затратам и может служить препятствием для промышленного внедрения способа. Настройка второго кирального объекта требует высокоточных спектрометрических измерений и также связана с большими издержками при изготовлении.

Задачей, на решение которой направлено заявляемое изобретение, является упрощение способа повышения октанового числа бензинов при сохранении его быстродействия и качества обработки бензина.

Заявляемый нами способ заключается в обработке низкооктанового бензина автомодулированным лазерным излучением, т.е. протекающий бензин становится рабочим телом и участвует в амплитудной и частотно-фазовой модуляции исходного лазерного излучения. Для этого излучением лазера воздействуют непосредственно на бензин, проходящий с ускорением через рабочую область оптического фильтра, где оно частично отражается от внутренней полупрозрачной и структурированной стенки фильтра, частично пройдя через нее, частично дифрагируя, далее излучение, отразившись от внешней стенки фильтра, попадает на внутреннюю стенку, где оно опять частично отражается, частично проходит и частично дифрагирует, далее это излучение интерферирует с первоначальным отраженным излучением и модулируется в ускоренном потоке бензина.

Суть обработки сводится к участию протекающего через оптический фильтр бензина в амплитудной и частотно-фазовой модуляции исходного лазерного излучения вследствие нелокальной связи между поляризацией и исходными полями, описываемыми уравнениями Минковского [5]:

способ повышения октанового числа бензинов, патент № 2315801

способ повышения октанового числа бензинов, патент № 2315801

где D и В - электрическая и магнитная индукции, Е и Н - электрическое и магнитное поля, способ повышения октанового числа бензинов, патент № 2315801 - диэлектрическая проницаемость, способ повышения октанового числа бензинов, патент № 2315801 - магнитная проницаемость, v - скорость среды, С - скорость света, а также через эффект Садовского, суть которого в передаче момента вращения связанному молекулярному электрону при поглощении им фотона [6] и, в силу отсутствия локальных симметрии высокого порядка в ближнем окружении углеводородных молекул в бензине, в химической перестройке исходных углеводородов в состояния с повышенной поляризуемостью, а это как раз и есть те состояния углеводородов, которые обладают повышенной детонационной стойкостью

В процессе модуляции излучения бензином происходит химическое преобразование углеводородных молекул бензина.

Инициация процесса преобразования бензина может быть описана следующим образом. В силу не локальности связи поляризации с соответствующим полем отпадает необходимость в использовании фотонных кристаллов с киральными свойствами. Оптический фильтр представляет собой систему двух зеркал, вложенных одна в другую, первая система полупрозрачна и структурирована, аналогично описанной в [7], вторая представляет собой сплошную зеркальную сборку. Лазерное излучение, попадая в систему фильтра, слегка уширяется по частоте в силу слабого межмодового взаимодействия и Допплер-эффекта, модулируя коэффициент экстинкции бензина, в результате спонтанное излучение также окажется промодулированным. Лазерное излучение подается в бензин таким образом, чтобы отраженное излучение как бы наматывалось на протекающий поток, обеспечивая мультипликационный эффект воздействия, что приведет к созданию множества областей реакционной активности по туннельному типу. В результате естественной фильтрации спонтанного излучения оно, попадая обратно в бензин, будет инициировать электронные переходы в пересекающихся электронных термах длинноцепочечных углеводородов, вызывая переходы молекул в состояния, которые будут устойчивы по отношению к данному воздействию. Время воздействия на молекулу углеводорода примерно в 10 6 меньше времени нахождения молекулы в данном окружении углеводородных соседей, т.е. за секунду для каждой молекулы углеводорода в бензине будет предоставляться примерно один миллион вариантов взаимодействия. Таким образом, при мощности лазера в 1 Вт, воздействию могут подвергаться примерно 103 грамм-молей бензина за секунду, а это примерно 100 кг бензина.

Заявляемый способ, как и прототип, реализуется при комнатной температуре, позволяет отказаться от сложных в реализации компонентов устройства, сократить или вообще отказаться от цикличности процесса при сохранении качества и быстроты обработки. Способ поясняется чертежами.

На фиг.1 представлена блок-схема способа.

На фиг.1А представлена блок-схема оптического фильтра.

На фиг.2 предстален реперный фрагмент газовой хроматограммы бензина до обработки.

На фиг.3 предстален реперный фрагмент газовой хроматограммы бензина после обработки.

Способ осуществляется следующим образом. Фиг 1: бензин 1 прогоняется по полиэтиленовой трубе 2, проходящей через оптический фильтр, где 3 - внутренняя стенка фильтра, а 5 - наружная стенка, где он подвергается обработке модулированным излучением красного лазера 4 относительно небольшой мощности 1 Вт. Далее обработанный бензин подается в приемный бак, содержащий систему рекуперации (на блок-схеме не обозначена).

На фиг.1А представлена блок-схема оптического фильтра, где 2 - полиэтиленовая трубка, по которой протекает бензин, 3 - внутренняя стенка фильтра, 5 - наружная стенка фильтра, 4 - введенное излучение, 7 - ход лучей внутри фильтра, все лучи, естественно, не показаны, т.к. это привело бы к закрашиванию внутренней полости фильтра.

Способ испытан в лабораторных условиях и подтвердил свою работоспособность.

Пример

Исходным продуктом был прямогонный бензин с тюменских месторождений. На фиг.2 представлен фрагмент газовой хроматограммы доли реперных молекул углеводородов в бензине до обработки. На фиг.3 представлен фрагмент газовой хроматограммы доли реперных молекул углеводородов после обработки. Изменения очевидны. При этом октановое число бензина возросло на 10 единиц: от 64 до 74 по исследовательскому методу.

Способ, по сравнению с прототипом, обеспечивает упрощение процесса повышения октанового числа бензина, позволяя сократить число циклов или вообще отказаться от цикличности и при сохранении быстродействия увеличить эффективность за счет более протяженной длины рабочей области.

Класс C10G15/08 с помощью электрических средств или электромагнитных или механических колебаний

способ быстрого пиролиза биомассы и углеводородсодержащих продуктов и устройство для его осуществления -  патент 2524110 (27.07.2014)
способ получения смазочной композиции -  патент 2483101 (27.05.2013)
способ электротермолиза нефтепродуктов и установка для его осуществления -  патент 2479621 (20.04.2013)
способ электрохимического крекинга углеводородного сырья -  патент 2473666 (27.01.2013)
способ скоростной деструкции нефтяных остатков и загрязнений -  патент 2462500 (27.09.2012)
способ кавитационной обработки жидких нефтепродуктов -  патент 2455341 (10.07.2012)
способ крекинга нефти и нефтепродуктов путем воздействия импульсными электрическими разрядами и устройство для его осуществления -  патент 2453581 (20.06.2012)
способ крекинга нефти и нефтепродуктов путем воздействия импульсными электрическими разрядами и устройство для его осуществления -  патент 2452763 (10.06.2012)
способ и устройство для получения ацетилена -  патент 2451658 (27.05.2012)
способ снижения вязкости сырой нефти в потоке и устройство для его реализации -  патент 2436835 (20.12.2011)

Класс C10G32/02 с помощью электрических или магнитных средств

Класс C10L1/02 на основе компонентов, включающих только углерод, водород и кислород 

комплексный способ производства метилового эфира ятрофы и сопутствующих продуктов -  патент 2528387 (20.09.2014)
способ переэтерификации растительного масла -  патент 2521343 (27.06.2014)
конверсия растительных масел в базовые масла и топлива для транспортных средств -  патент 2514918 (10.05.2014)
способ и установка для получения синтетического топлива -  патент 2509070 (10.03.2014)
углеводородная композиция, используемая в качестве топлива и горючего, полученная из компонентов нефти и биологического компонента -  патент 2505582 (27.01.2014)
совмещенный способ получения биотоплив из различных типов сырья и родственных продуктов -  патент 2503714 (10.01.2014)
композиция оксигенированного бензина с хорошими дорожными эксплуатационными характеристиками -  патент 2503710 (10.01.2014)
способ получения бионефти -  патент 2501840 (20.12.2013)
применение повышающего вязкость компонента в дизельном топливе -  патент 2495916 (20.10.2013)
полученное из биомассы пиролизное масло с низким содержанием металлов и способы его получения -  патент 2495909 (20.10.2013)
Наверх