способ селективного гидрирования диеновых углеводородов

Классы МПК:C07C7/163 гидрированием
C07C5/03 неароматических углерод-углеродных двойных связей
B01J23/44 палладий
Автор(ы):, , , , , ,
Патентообладатель(и):Открытое акционерное общество "Нижнекамскнефтехим" (RU)
Приоритеты:
подача заявки:
2006-03-09
публикация патента:

Использование: нефтехимия. Сущность: углеводородные фракции контактируют в присутствии водородсодержащего газа с катализатором, содержащим палладий на пористом носителе, который содержит мезопоры диаметром не менее 4 нм и не более чем 20 нм, обуславливающих от 80 до 98% общего объема пор в катализаторе, и характеризуется одним максимумом распределения объемов пор в диапазоне диаметров от 4 до 20 нм. Технический результат: углубление процесса гидрирования за счет увеличения активности катализатора по диолефинам и селективности по ароматическим углеводородам. 1 з.п. ф-лы, 1 табл.

Изобретение относится к химической и нефтехимической промышленности, а именно к селективному гидрированию примесей непредельных углеводородов в продуктах пиролиза, в частности к селективному гидрированию диеновых углеводородов во фракциях углеводородов.

Газообразные и жидкие продукты процесса пиролиза часто содержат в своем составе нежелательные примеси диеновых углеводородов. Одним из способов удаления примесей является селективное гидрирование диеновых углеводородов до соответствующих моноолефинов в присутствии катализаторов. В двухстадийном процессе каталитического гидрирования примесей непредельных углеводородов во фракциях бензина пиролиза после первой ступени гидрирования остаточное содержание диеновых соединений в пересчете на диеновое число не должно превышать 1 г йода на 100 г сырья при сохранении исходных ароматических углеводородов в сырьевом потоке.

Известен способ селективного гидрирования диеновых углеводородов на катализаторе с неорганическим оксидным носителем и активным компонентом палладием в количестве 0,005-0,5 мас.% с общим объемом пор 0,3-0,6 см3/г и средним диаметром пор в диапазоне от 40 до 100 нм (Патент США № 6797669, МПК В01J 023/42; В01J 023/44; В01J 023/40; В01J 023/58; В01J 023/72, опубл. 28.09.2004).

Процесс селективного гидрирования диеновых соединений этим способом характеризуется недостаточной селективностью, обусловленной высокой концентрацией поверхностных кислотных центров Льюиса, катализирующих протекание побочных процессов олигомеризации олефинов и конденсации ароматических соединений.

Наиболее близким к предлагаемому является способ селективного гидрирования диеновых углеводородов в олефиновых потоках на стационарном слое катализатора, содержащем 0,01-1,0 мас.% палладия, нанесенного на носитель альфа оксид алюминия со средним диаметром пор от 40 до 400 нм, в котором не менее 80% пор имеют диаметр в области от 20 до 600 нм (Патент США №4762956, МПК С07С 005/08, опубл. 09.09.1988).

Однако селективное гидрирование диеновых углеводородов в жидких фракциях пиролиза таким способом характеризуется недостаточной активностью вследствие высокой плотности распределения и формирования крупных кристаллитов палладия на поверхности катализатора.

Задачей изобретения является разработка способа селективного гидрирования диеновых углеводородов в углеводородных фракциях, позволяющего осуществить углубление процесса гидрирования за счет увеличения активности катализатора по диолефинам и селективности по ароматическим углеводородам.

Поставленная задача решается разработкой способа селективного гидрирования диеновых углеводородов в углеводородных фракциях в присутствии водородсодержащего газа и катализатора, содержащего палладий на пористом носителе, который содержит мезопоры диаметром не менее 4 нм и не более чем 20 нм, обуславливающих от 80 до 98% общего объема пор в катализаторе, и характеризуется одним максимумом распределения объемов пор в диапазоне диаметров от 4 до 20 нм.

Возможно проведение процесса селективного гидрирования диеновых углеводородов с использованием катализатора, содержащего палладий на пористом носителе, при соотношении компонентов, мас.%: палладий 0,01-1,0; пористый носитель - остальное.

Палладий, диспергированный на поверхности пористого носителя, широко применяется в процессах селективного гидрирования диеновых углеводородов. Свойства носителя обуславливают дисперсность, степень окисления, плотность распределения палладия, кислотно-основные характеристики поверхности, процессы теплопереноса и диффузии в его пористой системе. Наиболее распространенным способом оценки параметров пористой системы катализаторов - величины удельной поверхности, общего объема пор, формы пор, среднего диаметра пор и распределения пор по их размерам - является метод низкотемпературной адсорбции азота. Согласно принятой классификации выделяют микро-, мезо- и макропоры с диаметрами <2, 2÷50, >50 нм соответственно. Анализ дифференциальных кривых объемов пор по размерам, по положению соответствующих максимумов позволяет выявить поры доминирующих размеров и их вклад в величину общего порометрического объема в данной каталитической системе. Вследствие протекания реакции селективного гидрирования диолефинов в диффузионной области важно формирование оптимальной пористой структуры катализатора. Проведение реакции селективного гидрирования в микропористой области сопровождается снижением селективности процесса в результате возникновения диффузионных затруднений и протекания вторичных процессов на поверхности катализатора. В области макропор происходит уменьшение активности катализатора из-за ускорения процессов массопереноса. Оптимальной является мезопористая область, так как протекание процесса в мезопорах определенного размера позволяет лимитировать как скорости подвода реагентов к активным центрам катализатора, так и отвода продуктов реакции из его пористой системы и тем самым регулировать активность и селективность.

При сопоставлении существенных признаков изобретения с таковыми прототипа было выявлено, что они являются новыми и не описаны в прототипе, отсюда можно сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Введение новых отличительных признаков в сочетании с достигаемым результатом указывает на изобретательский уровень предлагаемого изобретения.

Предлагаемое изобретение соответствует критерию «промышленная применимость», так как оно может быть использовано в промышленности, что подтверждается примерами конкретного осуществления изобретения.

Катализатор готовится путем пропитки носителя оксида алюминия раствором палладийсодержащего соединения с последующей выдержкой в растворе палладийсодержащего соединения, удаления растворителя и восстановления палладия.

В качестве источников палладия могут применяться хлорид палладия, бромид палладия, йодид палладия, нитрат палладия, сульфат палладия, сульфид палладия, ацетат палладия, ацетилацетонат, оксалат палладия в индивидуальных формах или в комбинациях друг с другом.

В качестве пористого носителя могут применяться способ селективного гидрирования диеновых углеводородов, патент № 2301792 -, способ селективного гидрирования диеновых углеводородов, патент № 2301792 -, способ селективного гидрирования диеновых углеводородов, патент № 2301792 -, способ селективного гидрирования диеновых углеводородов, патент № 2301792 -, способ селективного гидрирования диеновых углеводородов, патент № 2301792 -, способ селективного гидрирования диеновых углеводородов, патент № 2301792 -Al2О3 в индивидуальных формах или в комбинациях с друг с другом, SiO 2, TiO2, MgO и другие. Величина удельной поверхности носителя варьируется от 10 до 200 м 2/г, объем пор - от 0,1 до 0,8 см2 /г.

В качестве показателей, характеризующих активность катализатора, принята величина диенового числа в контактном газе и конверсия диеновых углеводородов. В качестве показателя, характеризующего селективность катализатора, приняты относительный прирост или потеря ароматических углеводородов в сырьевом потоке.

Сущность метода определения параметров пористой системы катализатора изложена в методике ASTM D 3663-99 «Стандартный метод исследования площади поверхности и объема пор катализаторов и носителей катализаторов».

Пример 1

Реакцию селективного гидрирования диеновых углеводородов в С6-C8 фракции бензина пиролиза проводят в лабораторном реакторе с объемом палладийсодержащего катализатора на пористом носителе 50 см3 при температуре 50°С на входе в реактор, давлении 4,3 МПа, массовом разбавлении сырья гидрогенизатом, равном 1:3, соотношении водородсодержащего газа к сырью, равном 167 м33 в час, объемной скорости подачи сырья 3,6 ч-1. После 12 часов гидрирования отбирают и анализируют часовые пробы контактного газа.

Носитель оксид алюминия содержит мезопоры диаметром от 14 до 16 нм, обуславливающих 90% общего объема пор в катализаторе, и характеризуется при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 15.6 нм.

Диеновое число контактного газа равно 0,4 г J2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 93,5 и 0,51% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 2

Реакцию селективного гидрирования диеновых углеводородов во фракции C5-C9 бензина пиролиза осуществляют так же, как описано в примере 1, с носителем оксидом алюминия, содержащим мезопоры диаметром от 14 до 16 нм, обуславливающие 90% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 15,6 нм.

Диеновое число контактного газа равно 0,23 г J 2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 96,3 и 0,84% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 3

Реакцию селективного гидрирования диеновых углеводородов в С5 фракции углеводородов осуществляют так же, как описано в примере 1, с носителем оксидом алюминия, содержащим мезопоры диаметром от 8 до 12 нм, обуславливающие 95% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 10 нм.

Диеновое число контактного газа равно 0,50 г J2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 91,9 и 0,19% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 4

Реакцию селективного гидрирования диеновых углеводородов в С7-C 8 фракции углеводородов осуществляют так же, как описано в примере 1, используя катализатор следующего состава:

Pd - 0,30%; Al2O3 - остальное,

с носителем оксидом алюминия, содержащим мезопоры диаметром от 8 до 12 нм, обуславливающие 95% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 10 нм.

Диеновое число контактного газа равно 0,20 г J2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 96,8 и 0,79% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 5

Реакцию селективного гидрирования диеновых углеводородов в C8-C9 фракции углеводородов осуществляют так же, как описано в примере 1, используя катализатор следующего состава:

Pd - 1,0%; Al2 O3 - остальное,

с носителем оксидом алюминия, содержащим мезопоры диаметром от 4 до 7 нм, обуславливающие 85% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 5,6 нм.

Диеновое число контактного газа равно 0,09 г J2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 98,0 и 2,87% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 6

Реакцию селективного гидрирования диеновых углеводородов осуществляют так же, как описано в примере 1, используя катализатор следующего состава:

Pd - 0,20%; Al2O3 - остальное,

с носителем оксидом алюминия, содержащим мезопоры диаметром от 4 до 7 нм, обуславливающие 85% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 5,6 нм.

Диеновое число контактного газа равно 0,20 г J 2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 95,6 и 2,45% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 7

Реакцию селективного гидрирования диеновых углеводородов осуществляют так же, как описано в примере 1, используя катализатор следующего состава:

Pd - 0,15%; Al2O3 - остальное,

с носителем оксидом алюминия, содержащим мезопоры диаметром от 15 до 20 нм, обуславливающие 97% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 19,3 нм.

Диеновое число контактного газа равно 0,30 г J 2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 93,7 и 2,78% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 8

Реакцию селективного гидрирования диеновых углеводородов осуществляют так же, как описано в примере 1, используя катализатор следующего состава:

Pd - 0,5%; Al2O3 - остальное,

с носителем оксидом алюминия, содержащим мезопоры диаметром от 15 до 20 нм, обуславливающие 97% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 19,3 нм.

Диеновое число контактного газа равно 0,20 г J 2/100 г сырья, конверсия диеновых углеводородов и относительный прирост ароматических углеводородов составляют 95,6 и 2,48% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 9 (сравнения)

Реакцию селективного гидрирования диеновых углеводородов осуществляют так же, как описано в примере 1, используя катализатор с носителем оксидом алюминия, содержащим мезопоры диаметром от 20 до 70 нм, обуславливающие 70% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумами на дифференциальной кривой распределения объемов пор при диаметрах 4 и 56 нм.

Диеновое число контактного газа равно 0,70 г J 2/100 г сырья, конверсия диеновых углеводородов и относительные потери ароматических углеводородов составляют 92,3 и 0,45% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Пример 10 (сравнения)

Реакцию селективного гидрирования диеновых углеводородов осуществляют так же, как описано в примере 1, используя катализатор следующего состава:

Pd - 0,3%; Al2О3 - остальное,

с носителем оксидом алюминия, содержащим мезопоры диаметром от 20 до 70 нм, обуславливающие 70% общего объема пор в катализаторе, и характеризующимся при низкотемпературной адсорбции азота максимумом на дифференциальной кривой распределения объемов пор при диаметре 40 нм.

Диеновое число контактного газа равно 0,90 г J2/100 г сырья, конверсия диеновых углеводородов и относительные потери ароматических углеводородов составляют 92,5 и 0,36% соответственно. Характеристика исходного сырья и результаты опыта приведены в таблице.

Как видно из приведенных примеров, предлагаемый способ селективного гидрирования диеновых углеводородов в жидких продуктах пиролиза позволяет повысить эффективность процесса за счет более полного превращения диолефинов при высокой селективности по ароматическим углеводородам.

Увеличение гидрирующей активности обусловлено оптимизацией процессов массопереноса в пористой системе катализатора. Увеличение селективности катализатора обусловлено отсутствием микропор, затрудняющих диффузию реагентов и продуктов реакции, и протеканием процесса в мезопористой системе катализатора.

Таблица
№ примераИсходная углеводородная фракцияКонтактный газ
Диеновое число, г J2 /100 гКонцентрация ароматических углеводородов, %Диеновое число, г J2 /100 гКонверсия диеновых углеводородов, %Относительный прирост/потери ароматических углеводородов, %
1 6,221,30,40 93,5+0,51
26,221,3 0,2396,3+0,84
36,2 21,30,5091,9 +0,19
4 6,221,30,20 96,8+0,79
54,619,7 0,0998,0+2,87
64,6 19,70,2095,6 +2,45
7 4,619,70,30 93,7+2,78
84,619,7 0,2095,6+2,48
9 (сравн.)2,7 22,70,70 92,3-0,45
10 (сравн.)12,036,2 0,9092,5 -0,36

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ селективного гидрирования диеновых углеводородов в углеводородных фракциях в присутствии водородсодержащего газа и катализатора, содержащего палладий на пористом носителе, отличающийся тем, что катализатор содержит мезопоры диаметром не менее 4 нм и не более чем 20 нм, обуславливающих от 80 до 98% общего объема пор в катализаторе, и характеризуется одним максимумом распределения объемов пор в диапазоне диаметров от 4 до 20 нм.

2. Способ по п.1, отличающийся тем, что катализатор содержит компоненты при следующем соотношении, мас.%:

палладий0,01-1,0
пористый носитель остальное


Скачать патент РФ Официальная публикация
патента РФ № 2301792

patent-2301792.pdf
Патентный поиск по классам МПК-8:

Класс C07C7/163 гидрированием

Патенты РФ в классе C07C7/163:
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
способ переработки углеводородных соединений, содержащих нитрильные или аминные функциональные группы -  патент 2482104 (20.05.2013)
способ получения нитрилов -  патент 2467951 (27.11.2012)
способ гидрирования бензола, смесей бензола и толуола, смесей бензола и ксилола, или изомерной смеси ксилола, или смесей бензола, толуола и ксилола, или изомерной смеси ксилола, содержащих сернистые ароматические соединения, и способ их десульфирования -  патент 2404950 (27.11.2010)
способ очистки низших алканов -  патент 2402515 (27.10.2010)
способ приготовления палладиевого катализатора гидрирования ацетилена -  патент 2394645 (20.07.2010)
способ очистки стирола от примесей фенилацетилена -  патент 2385857 (10.04.2010)
способ извлечения и очистки 1,3-бутадиена -  патент 2304133 (10.08.2007)
способ получения бензола -  патент 2291892 (20.01.2007)
способ удаления метилацетилен/пропадиена (мапд) из углеводородных потоков (варианты) -  патент 2238928 (27.10.2004)

Класс C07C5/03 неароматических углерод-углеродных двойных связей

Класс B01J23/44 палладий

Патенты РФ в классе B01J23/44:
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
выхлопная система для двигателя внутреннего сгорания, работающего на бедной смеси, содержащая катализатор на основе сплава pd-au -  патент 2506988 (20.02.2014)
способ получения н-гептадекана гидродеоксигенированием стеариновой кислоты -  патент 2503649 (10.01.2014)
катализатор сжигания водорода, способ его получения и способ сжигания водорода -  патент 2494811 (10.10.2013)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
способ очистки сульфатного скипидара от сернистых соединений -  патент 2485154 (20.06.2013)
способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов -  патент 2482917 (27.05.2013)
способ получения оксида палладия(ii) на поверхности носителя -  патент 2482065 (20.05.2013)


Наверх