шихта для получения пористого проницаемого материала самораспространяющимся высокотемпературным синтезом

Классы МПК:B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава
B22F3/23 самораспространяющимся высокотемпературным синтезом или реакционным спеканием
C22C29/12 на основе оксидов
Автор(ы):,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) (RU)
Приоритеты:
подача заявки:
2005-12-20
публикация патента:

Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористых проницаемых материалов с заданным средним размером пор. Может применяться для изготовления фильтрующих элементов. Шихта содержит, мас.%: железная окалина 38-42; оксид алюминия 38-42; карбид титана 8-10; алюминий - остальное. Изделия из полученного пористого материала имеют высокую эксплуатационную стойкость и увеличенный срок службы. 1 табл.

Формула изобретения

Шихта для получения пористого проницаемого материала самораспространяющимся высокотемпературным синтезом, содержащая железную окалину, оксид алюминия и алюминий, отличающаяся тем, что она дополнительно содержит карбид титана при следующем соотношении компонентов, мас.%:

железная окалина38-42
оксид алюминия38-42
карбид титана8-10
алюминийостальное

Описание изобретения к патенту

Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористого проницаемого материала с заданным средним размером пор самораспространяющимся высокотемпературным синтезом (СВС), применяемого для изготовления фильтрующих элементов и других изделий с жесткими требованиями к прочности и среднему размеру пор.

Известна шихта для получения пористого проницаемого материала, содержащая железную окалину, алюминий, окись хрома (IV), хром и никель при следующем соотношении компонентов, мас.%: железная окалина 45-50; алюминий 12,5-27,5; окись хрома 17,5-18,5; хром 5-9; никель 5-2. Пористый проницаемый материал получают СВС. Материал имеет упорядоченную структуру перового пространства, коррозионную стойкость 9-16%, прочность на сжатие 8,4-12,2 МПа (авторское свидетельство SU 1779681, МПК5 С04В 38/02, 35/65).

Недостатками описанной шихты являются ограничение сферы применения получаемого из нее пористого проницаемого материала, обусловленное использованием дефицитных и токсичных компонентов, - окиси хрома, хрома и никеля, а также высокая стоимость этого материала.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является состав шихты для получения пористого проницаемого материала, содержащий железную окалину, оксид алюминия и алюминий в следующем соотношении компонентов: железная окалина 39-44 мас.%; оксид алюминия 35-43 мас.%; алюминий - остальное. Пористый проницаемый материал получают СВС. Материал имеет упорядоченную структуру порового пространства, твердость до 10 HRC и прочность на сжатие до 28 МПа (см. таблицу) (патент RU 2081731, МПК 6 В22F 1/00, 3/23).

Основными недостатками этой шихты являются невысокая эксплуатационная стойкость и пониженный срок службы изделий, изготовленных на основе полученного пористого проницаемого материала, вследствие их пониженных твердости (до 10 HRC) и прочности (до 28 МПа), что приводит к быстрому разрушению изделий, особенно при работе в условиях с токсичными средами.

Предлагаемым изобретением решается задача повышения эксплуатационной стойкости и увеличения срока службы изделий, изготовленных на основе получаемого пористого проницаемого материала.

Для достижения этого технического результата шихта для получения пористого проницаемого материала СВС, содержащая железную окалину, оксид алюминия и алюминий, дополнительно содержит карбид титана при следующем соотношении компонентов, мас.%:

Железная окалина38-42
Оксид алюминия38-42
Карбид титана8-10
АлюминийОстальное

Повышение эксплуатационной стойкости и увеличения срока службы изделий, изготовленных на основе получаемого пористого проницаемого материала, обеспечиваются вследствие повышения его твердости до 30-55 HRC и прочности на сжатие до 130-200 МПа (см. таблицу).

Введение в шихту карбида титана, количество которого составляет 8-10 мас.%, в качестве упрочнителя материала, является оптимальным, так как обеспечивает необходимые твердость и прочность на сжатие пористого проницаемого материала, получаемого из этой шихты. Содержание карбида титана в шихте менее 8 мас.% не приводит к достаточно большому повышению твердости названного материала, а при содержании карбида титана в шихте более 10 мас.% СВС не инициируется.

Введение в шихту железной окалины в количестве 38-42 мас.% является оптимальным, так как обеспечивает максимальную температуру горения и количество теплоты, достаточное для возникновения СВС и плавления карбида титана. При введении в шихту железной окалины в количестве, превышающем 42 мас.%, материал получается недостаточно пористым, а при введении в шихту железной окалины в количестве менее 38 мас.% процесс СВС полностью не проходит, материал получается хрупким и с большой пористостью.

Введение в шихту оксида алюминия в количестве 38-42 мас.% является оптимальным, так как при сгорании обеспечивает дополнительное количество теплоты для плавления карбида титана и повышает прочность материала. При количестве оксида алюминия в шихте менее 38 мас.% процесс горения происходит медленно, карбид титана полностью в реакцию не вступает, пористый проницаемый материал получается хрупким, неравномерным по твердости, от 8 до 55 HRC, а при содержании в шихте оксида алюминия в количестве более 42 мас.% твердость и прочность материала снижаются, а пористость увеличивается.

Введение в состав шихты алюминия обеспечивает инициирование процесса СВС и увеличивает температуру горения. При его отсутствии горение не возникает.

Предлагаемое изобретение поясняется таблицей, в которой приведены физико-механические свойства образцов пористого проницаемого материала, полученного на основе предлагаемой шихты, и образца пористого проницаемого материала, полученного на основе шихты-прототипа.

Шихта для получения пористого проницаемого материала СВС содержит железную окалину, оксид алюминия, карбид титана и алюминий при следующем соотношении компонентов, мас.%: железная окалина 38-42, оксид алюминия 38-42, карбид титана 8-10, алюминий - остальное.

Изобретение иллюстрируется следующим примером.

Для экспериментальной проверки заявляемого технического решения были подготовлены образцы шихты различного состава согласно изобретению, а также образец шихты-прототипа.

Для приготовления образцов использовались порошок железной окалины стали 18Х2Н4МА, порошок оксида алюминия МР, порошок карбида титана СВС/КТ-100 и порошок алюминия АСД-1.

Фракции порошков калибровались пропуском через сито с размером ячейки 63 мкм. Компоненты дозировались в заданных соотношениях на аналитических весах с точностью до 0,001 г и смешивались всухую в атмосфере воздуха в лабораторном смесителе типа «пьяная бочка» партиями по 200 г в течение 4 часов. Полученные образцы шихты помещались в кварцевые формы и в них возбуждался процесс СВС с помощью кратковременного теплового импульса.

Образцы материала представляют собой пористые цилиндрические штабики диаметром 50 мм и высотой 60 мм, которые использовались для определения характеристик материала.

Средний размер пор определялся металлографически по результатам 250 измерений индивидуальных пор и составил интервал значений 380-450 мкм. Распределение пор по размерам для каждого пятого образца определялось на автоматической установке "Videotest Image Analysis System Videotest", среднее квадратическое отклонение равно 13,2%.

Общая пористость определялась методом гидростатического взвешивания образцов и составила 26-62% для опытных образцов, для прототипа - 53%.

Прочность на сжатие измерялась по нагружению штабиков до разрушения, а твердость - по методу Роквелла в HRC вдавливанием алмазного конуса. Максимальная прочность штабиков из материала по заявляемой шихте равна 200 МПа, а максимальная твердость - 55 HRC.

Как следует из таблицы, шихта с заявленным составом позволяет получить пористый проницаемый материал с более высокой твердостью в 3,8-5,5 раза выше по сравнению с прототипом, и с повышенной прочностью на сжатие в 4,6-7,1 раза выше по сравнению с прототипом.

Благодаря увеличению твердости и прочности на сжатие пористый проницаемый материал из предлагаемой шихты позволяет обеспечить высокие эксплуатационные характеристики, например, при использовании в качестве фильтрующих элементов с жесткими требованиями к среднему размеру пор, твердости и прочности.

Использование предлагаемой шихты по сравнению с использованием шихты-прототипа позволяет расширить сферу применения получаемого пористого проницаемого материала, повысить эксплуатационную стойкость и увеличить срок службы изделий, изготовленных на основе этого материала, благодаря увеличению твердости и прочности на сжатие.

Таблица
Физико-механические свойства образцов пористого проницаемого материала, полученного на основе предлагаемой шихты, и образца пористого проницаемого материала, полученного на основе шихты-прототипа
№ п/п Состав шихты, мас.%Твердость, HRCПрочность на сжатие, МПа Пористость, %
Железная окалинаОксид алюминия Карбид титанаАлюминий
1.3743 6Остальное28 3262
2.3842 7Остальное30 13058
3.3842 8Остальное38 15058
4.3941 8Остальное38 14056
5.4040 9Остальное46 18055
6.4139 10Остальное55 20054
7.4238 10Остальное54 20052
8.4238 11Остальное- СВС не возникал-
9.43 3810Остальное 54200 26
10.42 3710 ОстальноеНеравномерная, 8-55 16, хрупкость, СВС полностью не проходит 62
Материал на основе шихты-прототипа
11. 4040Остальное -10 2853

Класс B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава

способ изготовления скользящих контактов -  патент 2529605 (27.09.2014)
композиция, улучшающая обрабатываемость резанием -  патент 2529128 (27.09.2014)
способ подготовки шихты порошковой проволоки и устройство для определения угла естественного откоса порошковых материалов -  патент 2528564 (20.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
способ получения диффузионно-легированного порошка железа или порошка на основе железа, диффузионно-легированный порошок, композиция, включающая диффузионно-легированный порошок, и прессованная и спеченная деталь, изготовленная из упомянутой композиции -  патент 2524510 (27.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
способ получения модифицированных наночастиц железа -  патент 2513332 (20.04.2014)
способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой -  патент 2513058 (20.04.2014)
порошковая ферромагнитная композиция и способ ее получения -  патент 2510993 (10.04.2014)
смазка для композиций порошковой металлургии -  патент 2510707 (10.04.2014)

Класс B22F3/23 самораспространяющимся высокотемпературным синтезом или реакционным спеканием

Класс C22C29/12 на основе оксидов

шихта для получения пористого проницаемого материала -  патент 2507030 (20.02.2014)
шихта для получения пористого проницаемого материала -  патент 2507029 (20.02.2014)
наноструктуры, состоящие из вентильных металлов и субоксидов вентильных металлов, и способ их получения -  патент 2493939 (27.09.2013)
способ получения сложных оксидных материалов -  патент 2492963 (20.09.2013)
пирохлорные материалы и создающее тепловой барьер покрытие с этими пирохлорными материалами -  патент 2454477 (27.06.2012)
способ получения высокотемпературного сверхпроводника в системе медь-оксид меди -  патент 2441936 (10.02.2012)
полупроводниковый ферримагнитный материал -  патент 2436859 (20.12.2011)
сплавленное зерно из оксида алюминия, оксида титана и диоксида циркония -  патент 2434963 (27.11.2011)
радиопоглощающий феррит -  патент 2417268 (27.04.2011)
высокотемпературный металлокерамический композит -  патент 2389814 (20.05.2010)
Наверх