блок коллектора спектрометра дрейфовой подвижности ионов

Классы МПК:G01N27/64 с использованием излучений для ионизации газов, например в ионизационной камере 
H01J49/26 масс-спектрометры или разделительные трубки
Патентообладатель(и):Капустин Владимир Иванович (RU)
Приоритеты:
подача заявки:
2005-04-18
публикация патента:

Изобретение относится к области аналитического приборостроения, а конкретно к спектрометрам дрейфовой подвижности для обнаружения паров органических веществ в составе воздуха. Блок коллектора ионов дрейф-спектрометра состоит из электрически изолированных коллектора ионов и двух электродов для регулирования тока ионов, причем один электрод для регулирования тока ионов расположен в зазоре между внутренним электродом устройства для разделения ионов и коллектором ионов, а второй электрод расположен в зазоре между внешним электродом устройства для разделения ионов и коллектором ионов, ширина зазора между электродами устройства для разделения ионов в области размещения электродов блока коллектора увеличена по сравнению с исходной величиной зазора между поверхностями электродов устройства для разделения ионов за счет выборок во внутреннем и внешнем электродах устройства для разделения ионов, а поверхности выборок в каждом электроде монотонно и симметрично переходят в цилиндрические части поверхностей электродов устройства для разделения ионов, при этом сечение входного канала выходного штуцера, сообщающееся с зазором между электродами устройства для разделения ионов, симметрично относительно плоскости симметрии спектрометра. Коллектор имеет участок с цилиндрической поверхностью, в которой имеется полость, один из торцов которой глухой, а через второй торец полость соединена с каналом выходного штуцера, при этом в данной поверхности выполнены две щели, параллельные аксиальной оси симметрии цилиндрической части поверхности коллектора и ориентированные в сторону внутреннего и в сторону внешнего электродов для регулирования тока ионов, а в каждом из электродов для регулирования тока ионов также имеется по одной щели, симметричной относительно плоскости симметрии спектрометра. Технический результат: высокая разрешающая способность прибора, простота его конструкции и малые габаритные размеры. 3 з.п. ф-лы, 3 ил. блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978

блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978

Формула изобретения

1. Блок коллектора спектрометра дрейфовой подвижности ионов, включающего входной штуцер с каналом для забора анализируемого воздуха, источник ионов, устройство для разделения ионов по параметрам их дрейфовой подвижности на воздухе, блок коллектора ионов и выходной штуцер, соединенный с внешним насосом для прокачки воздуха через спектрометр, при этом устройство для разделения ионов выполнено в виде двух соосных аксиально симметричных и электрически изолированных внутреннего и внешнего электродов, имеющих соответственно внешнюю с радиусом R1 и внутреннюю с радиусом R 2>R1 цилиндрические поверхности, причем один из электродов устройства для разделения ионов соединен с внешними источниками несимметричного импульсного и регулируемого постоянного напряжений, а блок коллектора ионов содержит электрически изолированный коллектор ионов, отличающийся тем, что торцы внутреннего и внешнего электродов устройства для разделения ионов с двух сторон герметично соединены диэлектрическими кольцевыми втулками, а входной и выходной штуцеры, источник ионов и блок коллектора ионов расположены вдоль второй оси симметрии спектрометра, перпендикулярной аксиальной оси симметрии электродов устройства для разделения ионов, таким образом, что входной штуцер и источник ионов расположены в направлении одного луча второй оси симметрии спектрометра, выходящего из точки пересечения второй и аксиальной осей симметрии, и герметично и электрически изолированно закреплены в отверстиях электродов устройства для разделения ионов, а блок коллектора ионов и выходной штуцер расположены в направлении второго луча второй оси симметрии, при этом блок коллектора ионов состоит из электрически изолированных коллектора ионов и двух электродов для регулирования тока ионов, причем каждый из этих трех электродов расположен в зазоре между электродами устройства для разделения ионов симметрично относительно плоскости симметрии спектрометра, проведенной через аксиальную и вторую оси симметрии спектрометра, при этом один электрод для регулирования тока ионов расположен в зазоре между внутренним электродом устройства для разделения ионов и коллектором ионов, а второй электрод для регулирования тока ионов расположен в зазоре между внешним электродом устройства для разделения ионов и коллектором ионов, при этом ширина зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 Н между электродами устройства для разделения ионов в области размещения электродов блока коллектора ионов увеличена по сравнению с исходной величиной зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 R=(R2-R1) между цилиндрическими частями поверхностей электродов устройства для разделения ионов за счет выборок во внутреннем и внешнем электродах устройства для разделения ионов, причем поверхности выборок в каждом электроде монотонно и симметрично относительно плоскости симметрии спектрометра переходят в цилиндрические части поверхностей внутреннего и внешнего электродов устройства для разделения ионов, при этом сечение входного канала выходного штуцера, сообщающееся с зазором между электродами устройства для разделения ионов, симметрично относительно плоскости симметрии спектрометра.

2. Спектрометр по п.1, отличающийся тем, что ширину зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 Н между поверхностями выборок в электродах устройства для разделения ионов выбирают в интервале блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 H=(4÷12)·(R2-R 1), при этом глубину выборки во внутреннем электроде и глубину выборки во внешнем электроде выбирают равными.

3. Спектрометр по п.1, отличающийся тем, что протяженности коллектора ионов L1, внутреннего электрода для регулирования тока ионов L2 и внешнего электрода для регулирования тока ионов L3 в направлении вдоль зазора между электродами устройства для разделения ионов, а также протяженности выборок L4 во внутреннем и L5 во внешнем электродах устройства для разделения ионов в этом же направлении выбирают из соотношений L1=(0,8÷1)·(L 4+L5)/2; L2 =(0,8÷1)·L4; L3=(0,8÷1)·L 5.

4. Спектрометр по п.1, отличающийся тем, что коллектор ионов имеет участок с цилиндрической внешней поверхностью, аксиальная ось симметрии которой параллельна аксиальной оси симметрии электродов устройства для разделения ионов, при этом в направлении аксиальной оси симметрии данного участка коллектора в нем имеется полость, один из торцов которой глухой, а через второй торец полость соединена электрически изолированным каналом с каналом выходного штуцера, при этом в цилиндрической части поверхности коллектора выполнены две щели, соединяющие полость коллектора с зазором между электродами устройства для разделения ионов, параллельные аксиальной оси симметрии цилиндрической части поверхности коллектора ионов и ориентированные соответственно в сторону внутреннего и в сторону внешнего электродов для регулирования тока ионов, причем каждая из щелей симметрична относительно плоскости симметрии спектрометра, а в каждом из электродов для регулирования тока ионов также имеется по одной щели, симметричной относительно плоскости симметрии спектрометра.

Описание изобретения к патенту

Изобретение относится к области аналитического приборостроения для целей газового анализа, а более конкретно к основным узлам дрейф-спектрометров для обнаружения паров органических веществ в составе воздуха атмосферного давления, в частности, для обнаружения паров органических молекул из класса взрывчатых, наркотических и физиологически активных веществ в составе воздуха, прокачиваемого через прибор.

Известен блок коллектора ионов дрейф-спектрометра для обнаружения паров органических веществ в воздухе [1], содержащего расположенные последовательно по направлению прокачки воздуха через спектрометр устройство для ионизации паров органических веществ в воздухе на основе радиоизотопного источника излучения (источник ионов), устройство для разделения ионов по параметрам их дрейфовой подвижности на воздухе, образованное двумя коаксиальными цилиндрическими электродами, и блок коллектора ионов, состоящий из коллектора ионов и электрода для регулирования тока ионов.

Основными недостатками известного устройства являются отсутствие селективности радиоизотопного ионизатора по отношению к определенным классам органических веществ, значительные габариты дрейф-спектрометра и низкая эффективность сбора ионов коллектором, что связано с его конструктивными особенностями - несимметричностью относительно потока ионов, входящих в блок коллектора. Поэтому разрешающая способность такого дрейф-спектрометра с коллектором коаксиального типа недостаточна для уверенного разделения ионов по параметрам их подвижности на воздухе.

Наиболее близким к заявленному изобретению является блок коллектора спектрометра дрейфовой подвижности ионов [2], включающего входной штуцер с каналом для забора анализируемого воздуха, источник ионов, устройство для разделения ионов по параметрам их дрейфовой подвижности на воздухе, блок коллектора ионов и выходной штуцер, соединенный с внешним насосом для прокачки воздуха через спектрометр, при этом устройство для разделения ионов выполнено в виде двух соосных аксиально симметричных и электрически изолированных внутреннего и внешнего электродов, имеющих соответственно внешнюю с радиусом R1 и внутреннюю с радиусом R 2>R1 цилиндрические поверхности, причем один из электродов устройства для разделения ионов соединен с внешними источниками несимметричного импульсного и регулируемого постоянного напряжений, а блок коллектора ионов содержит электрически изолированный коллектор ионов.

Данный тип блока коллектора, входящий в состав дрейф-спектрометра с поверхностно-ионизационным источником ионов, в зависимости от выбранного типа материала термоэмиттера источника ионов [3-5] обладает достаточно высокой селективностью по отношению к определенным классам органических веществ, а эффективность сбора ионов блоком коллектора ионов у данного типа спектрометра более высокая из-за симметрии газового потока, обтекающего коллектор ионов.

Основными недостатками известного блока коллектора дрейф-спектрометра с коаксиальным расположением электродов устройства для разделения ионов остаются недостаточная эффективность сбора ионов коллектором ионов и низкая разрешающая способность дрейф-спектрометра, обусловленная как конструкцией самого дрейф-спектрометра, так и конструкцией блока коллектора. Это обусловлено действием объемного заряда положительно заряженных ионов органических молекул [2], движущихся в спектрометре и блоке коллектора со скоростью воздушного потока, прокачиваемого через спектрометр, то есть со скоростью порядка нескольких метров или нескольких десятков метров в секунду. Кроме того, известный тип спектрометра с известным типом блока коллектора обладает значительными габаритами, что не позволяет создавать портативные приборы с высокой разрешающей способностью.

В основу настоящего изобретения положена задача разработать конструкцию блока коллектора для портативного дрейф-спектрометра с коаксиальным расположением электродов устройства для разделения ионов, обеспечивающих высокую разрешающую способность прибора, простоту его конструкции и малые габаритные размеры.

Поставленная цель достигается тем, что торцы внутреннего и внешнего электродов устройства для разделения ионов с двух сторон герметично соединены диэлектрическими кольцевыми втулками, а входной и выходной штуцеры, источник ионов и блок коллектора ионов расположены вдоль второй оси симметрии спектрометра, перпендикулярной аксиальной оси симметрии электродов устройства для разделения ионов, таким образом, что входной штуцер и источник ионов расположены в направлении одного луча второй оси симметрии спектрометра, выходящего из точки пересечения второй и аксиальной осей симметрии, и герметично и электрически изолированно закреплены в отверстиях электродов устройства для разделения ионов, а блок коллектора ионов и выходной штуцер расположены в направлении второго луча второй оси симметрии, при этом блок коллектора ионов состоит из электрически изолированных коллектора ионов и двух электродов для регулирования тока ионов, причем каждый из этих трех электродов расположен в зазоре между электродами устройства для разделения ионов симметрично относительно плоскости симметрии спектрометра, проведенной через аксиальную и вторую оси симметрии спектрометра, при этом один электрод для регулирования тока ионов расположен в зазоре между внутренним электродом устройства для разделения ионов и коллектором ионов, а второй электрод для регулирования тока ионов расположен в зазоре между внешним электродом устройства для разделения ионов и коллектором ионов, при этом ширина зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 H между электродами устройства для разделения ионов в области размещения электродов блока коллектора ионов увеличена по сравнению с исходной величиной зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 R=(R2-R1) между цилиндрическими частями поверхностей электродов устройства для разделения ионов за счет выборок во внутреннем и внешнем электродах устройства для разделения ионов, причем поверхности выборок в каждом электроде монотонно и симметрично относительно плоскости симметрии спектрометра переходят в цилиндрические части поверхностей внутреннего и внешнего электродов устройства для разделения ионов, при этом сечение входного канала выходного штуцера, сообщающееся с зазором между электродами устройства для разделения ионов, симметрично относительно плоскости симметрии спектрометра.

Ширину зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 Н между поверхностями выборок в электродах устройства для разделения ионов выбирают в интервале блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 Н=(4÷12)·(R2-R 1), при этом глубину выборки во внутреннем электроде и глубину выборки во внешнем электроде выбирают равными.

Протяженности коллектора ионов L1 внутреннего электрода для регулирования тока ионов L2 и внешнего электрода для регулирования тока ионов L 3 в направлении вдоль зазора между электродами устройства для разделения ионов, а также протяженности выборок L 4 во внутреннем и L5 во внешнем электродах устройства для разделения ионов в этом же направлении выбирают из соотношений L1=(0,8÷1)·(L 4+L5)/2, L2 =(0,8÷1)·L4, L 3=(0,8÷1)·L5.

Коллектор ионов имеет участок с цилиндрической внешней поверхностью, аксиальная ось симметрии которой параллельна аксиальной оси симметрии электродов устройства для разделения ионов, при этом в направлении аксиальной оси симметрии данного участка коллектора в нем имеется полость, один из торцов которой глухой, а через второй торец полость соединена электрически изолированным каналом с каналом выходного штуцера, при этом в цилиндрической части поверхности коллектора выполнены две щели, соединяющие полость коллектора с зазором между электродами устройства для разделения ионов, параллельные аксиальной оси симметрии цилиндрической части поверхности коллектора ионов и ориентированные соответственно в сторону внутреннего и в сторону внешнего электродов для регулирования тока ионов, причем каждая из щелей симметрична относительно плоскости симметрии спектрометра, а в каждом из электродов для регулирования тока ионов также имеется по одной щели, симметричной относительно плоскости симметрии спектрометра.

Заявленная конструкция иллюстрируется следующими чертежами: фиг.1 - сечение блока коллектора дрейф-спектрометра по плоскости симметрии; фиг.2 - вид варианта блока коллектора в плоскости, перпендикулярной аксиальной оси симметрии устройства для разделения ионов; фиг.3 - вариант конструкции блока коллектора с расположением входного канала выходного штуцера, обеспечивающего полную симметрию прокачки воздуха через блок коллектора.

Изображенное на чертежах устройство включает следующие элементы:

1-1 - аксиальная ось симметрии устройства для разделения ионов, 2-2 - вторая ось симметрии спектрометра, 3 - внутренний электрод устройства для разделения ионов, 4 - внешний электрод устройства для разделения ионов, 5 - диэлектрические кольцевые втулки, 6 - входной штуцер, 7 и 8 - электроды источника ионов, 9 - выходной штуцер, 10 - коллектор, 11 - внутренний электрод для регулирования тока ионов, 12 - внешний электрод для регулирования тока ионов, 13 - изоляторы, 14 - переходник, соединяющий полость коллектора и выходной штуцер, 15 - цилиндрическая часть поверхности коллектора ионов, 16 - щели в коллекторе ионов, 17 - щели в электродах для регулирования тока ионов.

Входное отверстие канала выходного штуцера, соединяющее канал выходного штуцера с зазором между электродами устройства для разделения ионов, должно быть симметрично относительно плоскости симметрии блока коллектора и спектрометра. При этом канал штуцера может иметь два и более отверстий, симметричных относительно указанной плоскости симметрии, как это фактически и выполнено в варианте фиг.3. Это не меняет сущности изобретения. Принципиально важна только симметрия прокачки воздуха между электродами блока коллектора ионов. Протяженность электродов блока коллектора в направлении зазора между электродами устройства для разделения ионов может быть различна, но в пределах формулы изобретения.

Если L1>(L4 +L5)/2 или L2>L 4 или L3>L5 , то возможны электрические пробои между электродами блока коллектора и электродами устройства для разделения ионов. Если же L 1<0,8·(L4+L 5)/2 или L2<0,8·L 4 или L3<0,8 ·L 5, то эффективность сбора ионов коллектором и эффективность управления током коллектора соответствующими электродами уменьшается из-за влияния пространственного заряда ионов на пути от входа в расширяющийся зазор между электродами для разделения ионов и электродами блока коллектора.

Конкретная протяженность каждого электрода выбирается исходя из формы и протяженности выборок в электродах устройства для разделения ионов. При этом поверхности этих выборок могут быть как плоскими, так и, например, цилиндрическими. При этом однако важно обеспечить симметричность и монотонность перехода поверхностей выборок в цилиндрические поверхности электродов устройства для разделения ионов. Ширина щелей 16 не привязана жестко к ширине щелей 17, а определяется конкретными геометрическими размерами электродов блока коллектора и величиной объемной скорости прокачки воздуха через спектрометр.

Если ширина зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 Н>12·(R2-R 1), то из-за слишком малой скорости газового потока возрастает расходимость ионного пучка из-за действия объемного заряда ионов, то есть снижается эффективность их сбора коллектором. Если же ширина зазора блок коллектора спектрометра дрейфовой подвижности ионов, патент № 2293978 Н<4·(R2-R 1), то слишком велика скорость газового потока в зазоре между электродами блока коллектора, что также приводит с снижению эффективности сбора ионов коллектором.

Блок коллектора ионов в составе дрейф-спектрометра работает следующим образом. Штуцер 9 соединяют с внешним насосом и через спектрометр прокачивают воздух атмосферного давления с объемной скоростью (2÷6) литров/мин. Коллектор ионов 10 соединяют с входом усилителя ионного тока. При использовании поверхностно-ионизационного источника ионов электрод 8 снабжают дополнительным нагревателем и датчиком температуры. Включают нагрев электрода 8, изготовленного в данном случае из сплава на основе молибдена, вольфрама, ванадия или из оксидной бронзы щелочного металла, обеспечивающих селективную ионизацию органических молекул, и устанавливают рабочую температуру электрода 8 в интервале (200÷600)°С в зависимости от типа материала термоэмиттера. На электрод 8 подают напряжение положительной полярности величиной в интервале (80÷300) вольт. При этом в цепи электрода 7 по величине ионного тока можно контролировать интегральный ток ионов с поверхности термоэмиттера. На электроды 11 и 12 подают напряжение (-10÷+10) вольт в зависимости от величины напряжения на электроде 8 и величины объемной скорости прокачиваемого воздуха. Электрод 4 соединяют с общей точкой цепей питания спектрометра, а на электрод 3 подают сумму несимметричного импульсного высоковольтного напряжения, например, частотой 500 кГц и амплитудой импульса до 3 киловольт, и линейно изменяющегося постоянного напряжения, которое однократно или периодически изменяется, например, в интервале (-80÷+80) вольт. В состав воздуха, засасываемого в спектрометр через канал входного штуцера, подают пробу органических веществ в виде их паров. При этом регистрируют две зависимости: зависимость тока электрода 7 от времени и зависимость тока электрода 10 от величины линейно изменяющегося постоянного напряжения, подаваемого на электрод 3. Первая из указанных зависимостей характеризует изменение по времени концентрации органических молекул в составе засасываемого воздуха. Вторая зависимость отражает дрейф-спектр типов молекул в составе засасываемого воздуха.

Оптимальным с точки зрения чувствительности и разрешающей способности спектрометра является вариант исполнения, в котором обеспечивается полная симметрия прокачки воздуха через блок коллектора. Это позволяет использовать электроды блока коллектора с минимальной протяженностью вдоль зазора между электродами устройства для разделения ионов.

Изложенное показывает, что в научно-технической и патентной литературе отсутствуют технические решения, позволяющие достичь указанных технических результатов с помощью вышеуказанных приемов и средств, что позволяет сделать вывод о соответствии заявляемого изобретения условиям патентоспособности: "новизна" и "изобретательский уровень". Заявленная конструкция может быть реализована в промышленности, что позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности: "промышленная применимость".

Испытание блока коллектора спектрометра, изготовленного в соответствии с заявленным изобретением, показали, что он обладает высокой эффективностью сбора ионов, широким динамическим диапазоном и обеспечивает высокую разрешающую способность спектрометра при малых габаритных размерах.

Источники информации

1. Патент США №5,420,424 от 30 мая 1995 г. (аналог).

2. Банных О.А., Поварова К.Б., Капустин В.И., Новый подход к поверхностной ионизации и дрейф-спектроскопии органических молекул ЖТФ, 2002, том 72, вып.12, с.88-93 (прототип).

3. Банных О.А., Поварова К.Б., Капустин В.И. и др., "Физикохимия поверхностной ионизации некоторых типов органических молекул". Доклады Академии Наук, 2002, том 385, №2, с.200-204.

4. Патент РФ №2186384 от 21.12.1999 г.

5. Патент РФ №2138877 от 12.08.1997 г.

Класс G01N27/64 с использованием излучений для ионизации газов, например в ионизационной камере 

фотоионизационный детектор для газоаналитической аппаратуры -  патент 2523765 (20.07.2014)
способ измерения концентрации азотной кислоты в воздухе и устройство для его осуществления -  патент 2517977 (10.06.2014)
применение 5-нитрованилина в качестве калибровочного вещества для калибрования времени пролета в спектрометре ионной подвижности -  патент 2482470 (20.05.2013)
ионизационный газосигнализатор и способ его работы -  патент 2471179 (27.12.2012)
способ и устройство для измерения подвижности ионов -  патент 2431827 (20.10.2011)
способ и приспособление для выработки положительно и/или отрицательно ионизированных анализируемых газов для анализа газов -  патент 2426983 (20.08.2011)
устройство дрейфовой трубки спектрометра ионной подвижности -  патент 2398309 (27.08.2010)
газоанализатор -  патент 2395076 (20.07.2010)
способ проведения количественного масс-спектрометрического анализа состава газовой смеси -  патент 2367939 (20.09.2009)
газоанализатор и способ его работы -  патент 2350941 (27.03.2009)

Класс H01J49/26 масс-спектрометры или разделительные трубки

трубка для измерения подвижности ионов -  патент 2518055 (10.06.2014)
способ определения концентрации ванадия в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой (варианты) -  патент 2466096 (10.11.2012)
способ определения изотопного состава метана -  патент 2461909 (20.09.2012)
статический масс-анализатор ионов -  патент 2456700 (20.07.2012)
способ определения изотопного состава гексафторида урана с помощью многоколлекторного масс-спектрометра -  патент 2337428 (27.10.2008)
способ определения эффекта "дискриминации" изотопного состава вещества в узлах многоколлекторного масс-спектрометра -  патент 2337427 (27.10.2008)
способ масс-спектрометрического анализа различных химических соединений -  патент 2321850 (10.04.2008)
способ масс-спектрометрического анализа твердого вещества -  патент 2315388 (20.01.2008)
спектрометр ионной подвижности -  патент 2293977 (20.02.2007)
поверхностно-ионизационный источник ионов органических соединений -  патент 2293976 (20.02.2007)
Наверх