способ получения наполненного бутадиен-стирольного каучука

Классы МПК:C08C1/14 коагуляция 
C08F2/22 эмульсионная полимеризация
C08F236/10 с винилароматическими мономерами
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная лесотехническая академия" (RU)
Приоритеты:
подача заявки:
2005-12-20
публикация патента:

Изобретение относится к производству бутадиен-стирольных каучуков, получаемых методом эмульсионной (со)полимеризации, в частности к способам выделения их из латексов, и может быть использовано в нефтехимической промышленности. Описан способ получения наполненного бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, введении наполнителя и антиоксиданта, дегазации и выделении каучука из латекса методом коагуляции, отличающийся тем, что в качестве наполнителя и антиоксиданта используют волокнополимерноантиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон, с углеводородным раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, содержащего антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук. Технический эффект - уменьшение потерь каучука, снижение загрязнения окружающей среды и повышение физико-механических показателей вулканизатов. 2 табл.

Формула изобретения

Способ получения наполненного бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперирования процесса, введения наполнителя и антиоксиданта, дегазации и выделения каучука из латекса методом коагуляции, отличающийся тем, что в качестве наполнителя и антиоксиданта используют волокнополимерно-антиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон, с углеводородным раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, содержащего антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук.

Описание изобретения к патенту

Изобретение относится к производству бутадиен-стирольных каучуков, получаемых эмульсионной (со)полимеризацией, в частности к способам наполнения их на стадии латексов, и может быть использовано в нефтехимической промышленности.

Наиболее близким по технической сущности является способ получения наполненных бутадиен-стирольных каучуков на стадии латекса с использованием в качестве наполнителей нафтеновых, парафиновых масел с последующим выделением наполненного каучука водно-солевыми растворами и подкисляющим агентом. [Кирпичников П.А., Аверко-Антонович Л.А., Аверко-Антонович Ю.О. Химия и технология синтетического каучука: Учебник для вузов. - 3-е изд., перераб. - Л.: Химия, 1987. - 424 с., ил.].

Основными недостатками данного способа получения наполненных бутадиен-стирольных каучуков являются:

- образование мелкодисперсной крошки каучука, которая уносится с серумом и промывными водами из цехов выделения, что приводит к снижению производительности процесса;

- нарушение стабильности процесса;

- загрязнение окружающей среды каучуковыми продуктами;

- невысокая устойчивость термоокислительному воздействию.

Задачей, на решение которой направлено данное изобретение, является стабилизация процесса выделения каучука из латекса, уменьшение потерь каучука с образовавшейся крошкой из цехов выделения, снижение загрязнения окружающей среды каучуковыми продуктами, улучшение физико-механических показателей вулканизатов.

Поставленная задача достигается тем, что в способе получения наполненного бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в эмульсии в присутствии радикальных инициаторов, стопперировании процесса, введении наполнителя и антиоксиданта, дегазации и выделении каучука из латекса методом коагуляции, согласно изобретения в качестве наполнителя и антиоксиданта используют волокнополимерноантиоксидантный композит, полученный предварительным смешением измельченных разволокненных волокон, с углеводородным раствором низкомолекулярного полимерного материала, полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола, содержащего антиоксидант аминного или фенольного типа, перетиром полученного композита, диспергированием его в водной фазе, содержащей поверхностно-активные вещества, отгонкой низкокипящей углеводородной фракции и введением в количестве 2-6% низкомолекулярного полимерного материала и 0,1-1,0% волокнистого наполнителя на каучук.

Предлагаемый способ получения наполненного бутадиен-стирольного каучука позволяет стабилизировать процесс коагуляции, уменьшить потери каучука, снизить загрязнение окружающей среды и повысить физико-механические показатели вулканизатов.

Способ осуществляется следующим образом

Сополимеризацию бутадиена со стиролом осуществляют в батарее, состоящей из 10-12 полимеризационных аппаратов, в присутствии инициаторов радикального типа (например гидропероксида пинана). После достижения конверсии 65-70% в систему вводится стоппер радикального процесса (нитрит натрия, ронгалит и др.) и полученный латекс подается на дегазацию, где происходит отгонка незаполимеризовавшихся мономеров (стирол, бутадиен и других низкокипящих продуктов. Из отделения дегазации латекс поступает на коагуляцию, где смешивается с масляноантиоксидантной эмульсией и агентами, обеспечивающими выделение каучука из латекса (водный раствор хлорида натрия и серной кислоты). Образующаяся крошка каучука подается на промывку, обезвоживание, сушку и упаковку (Распопов И.В., Никулин С.С., Гаршин А.П. и др. Совершенствование оборудования и технологии выделения бутадиен-(способ получения наполненного бутадиен-стирольного каучука, патент № 2291157 -метил)стирольных каучуков из латексов. М.: ЦНИИТЭ-нефтехим, 1997. 68 с.). Данный процесс соответствует ограничительной части формулы изобретения.

Низкомолекулярный полимерный материал (НПМ) получали сополимеризацией непредельных соединений (4-винилциклогексена; циклододекатриена-1,5,9; н-додекатетраена-2,4,6,10), содержащихся в кубовом остатке очистки возвратного растворителя - толуола со стиролом в присутствии алюмосиликатных катализаторов. Данный процесс был реализован в промышленных масштабах, а получаемый НПМ использовался в производстве лакокрасочных материалов (Сидоров С.Л., Шаповалова Н.Н., Молодыка А.В. и др. // Производство и использование эластомеров. 1993. N 4. С.11-14). Свойства НПМ полученного на основе кубового остатка очистки возвратного растворителя - толуола производства полибутадиенового каучука и стирола: цвет по йодометрической шкале (ИМШ) - 200-500; массовая доля остаточного стирола - не более 0,1%; содержание связанного стирола - 65-70%; условная вязкость по ВЗ-4 - 42-46 с, молекулярная масса - 1300-1700.

Волокнистые материалы, являющиеся отходами различных производств (обрезки тканей, нитей, путанки и др.), подвергают разволокнению и измельчению до размера 2-10 мм и смешивают с углеводородным раствором низкомолекулярного полимерного материала (НПМ), полученного на основе кубового остатка очистки возвратного растворителя - толуола и стирола, содержащего аминные или фенольные антиоксиданты. Полученный композит перемешивают на высокоскоростной мешалке в течение 10-15 минут при 60-90°С и подвергают дополнительному перетиру в течение 1-3 часов. В результате данных технологических операций происходит втирание масла в волокнистый материал и его обезвоживание. Полученный композит при постоянном высокоскоростном перемешивании диспергируется в водной фазе, содержащей поверхностно-активные вещества при 40-60°С в течение 1-3 часов. Дозировку волокнистого наполнителя выдерживают 0,1-1,0% на каучук, НПМ - от 2 до 6% на каучук. Применение более высоких дозировок волокнистого наполнителя (более 1,0% на каучук) приводит к резкому увеличению вязкости системы, что отрицательно влияет на ее подвижность и транспортабельность по трубопроводам. После отгонки низкомолекулярной углеводородной фракции (растворителя, незаполимеризовавшихся мономеров и других низкокипящих продуктов) водноволокнополимерноантиоксидантную дисперсию (ВВПАД) смешивают с латексом СКС-30 АРК. Каучуковый латекс, содержащий ВВПАД, подают на коагуляцию.

Бутадиен-стирольный латекс СКС-30 АРК, содержащий ВВПАД, заливают в емкость для коагуляции, снабженную перемешивающим устройством и помещенную в термостат для поддержания заданной температуры. Выдерживают при заданной температуре 10-15 минут, вводят коагулирующий агент - 24% водный раствор хлорида натрия и перемешивают 5-10 минут. Процесс выделения завершают вводом 2% водного раствора серной кислоты. рН коагуляции выдерживают 2,0-2,5. Образующийся коагулюм отделяют от серума, промывают водой и высушивают при температуре 80-85°С. Полноту коагуляции оценивают визуально серум прозрачный - коагуляция полная), а также по массе образующегося коагулюма.

Способ поясняется следующими примерами

Сополимеризация бутадиена со стиролом осуществляется по непрерывной схеме на батарее, состоящей из 12 полимеризаторов. В первый по ходу процесса полимеризатор подается водная и углеводородная фазы (смесь 70% бутадиена и 30% стирола), радикальный инициатор (гидропероксиды изопропилбензола, пинана и др.) и регулятор молекулярной массы (третичный додецилмеркаптан). Дополнительные количества регулятора молекулярной массы вводятся в процесс перед пятым и девятым полимеризаторами. Полимеризаторы оборудованы мешалками. Сополимеризацию бутадиена со стиролом проводят при 4-8°С. Процесс ведут до конверсии 65-68%. При выходе из последнего полимеризатора латекс непрерывно заправляется стоппером - раствором диметилдитиокарбаматом натрия с нитритом натрия. Заправленный стоппером латекс проходит через фильтр и направляется на отгонку незаполимеризовавшихся мономеров в верхнюю часть колонны предварительной дегазации, где происходит отгонка основного количества бутадиена. После колонны предварительной дегазации латекс направляется в вакуумный отгонный аппарат, где происходит отгонка стирола и оставшегося бутадиена. Латекс из отделения дегазации подается на коагуляцию.

В емкость, снабженную перемешивающим устройством, вводят 70 г НПМ, 30 г растворителя (толуол) и антиоксиданты аминного или фенольного типа в количествах, соответствующих требованиям ТУ на выпускаемую марку каучука. Смесь при постоянном перемешивании нагревают до температуры 60-90°С и вводят волокнистый наполнитель (хлопок, вискоза, капрон), подвергнутый разволокнению и измельчению, перемешивают полученную смесь еще 10-15 минут. Перетир полученного композита проводят в шаровой мельнице в течение 1-3 часов. После перетира полученный композит смешивают с водным раствором, содержащим поверхностно-активные вещества - канифольное мыло, мыла на основе жирных кислот, таллового масла в количествах 6% и лейканол 0,5% на диспергируемую фазу и гомогенизируют в течение 1-3 часов при 40-60°С на оборудовании, снабженном высокоскоростным перемешивающим устройством. Одновременно с этим проводят отгонку под вакуумом легкокипящей углеводородной фракции (растворителя -толуола и др.) из полученной дисперсии. Сухой остаток находится в пределах 30-50%.

Полученную дисперсию подают на смешение с латексом бутадиен-стирольного каучука СКС-30 АРК в емкость для коагуляции, снабженную перемешивающим устройством и помещенную для поддержания заданной температуры в термостат. Выдерживают при заданной температуре 10-15 минут и при постояном перемешивании вводят 24% водный раствор хлорида натрия. Для завершения процесса коагуляции вводят подкисляющий агент, в виде 1-2% водного раствора серной кислоты. Расход серной кислоты - 15,0 кг/т каучука. рН коагуляции 2-2,5. После коагуляции образующийся коагулюм отделяют от серума, промывают водой и высушивают при температуре 80-85°С. Полноту коагуляции оценивают визуально (серум прозрачный - коагуляция полная), а также по массе образующегося коагулюма.

В таблице 1 приведены примеры по влиянию температуры, дозировки НПМ и волокнистого материала (% на каучук) на процесс выделения каучука из латекса. Экспериментальные данные, представленные в табл.1, показывают, что дополнительное введение ВВПАД в латекс перед подачей его на коагуляцию позволяет повысить массу (выход, %) образующегося коагулюма, что может быть связано как с дополнительным введением НПМ и волокнистого материала, а также за счет уменьшения потерь с образующейся мелкодисперсной крошкой, уносимой со стадии выделения и отмывки серумом и промывными водами.

Выделенная после коагуляции крошка каучука СКС-30 АРК, наполненная НПМ и волокнистыми наполнителями, подвергалась сушке в сушильном шкафу при температуре 80-85°С. В дальнейшем на основе наполненного каучука СКС-30 АРК была приготовлена резиновая смесь по стандарной рецептуре и вулканизаты на ее основе.

В таблице 2 приведены показатели каучуков, резиновых смесей и вулканизатов стандартных резин на основе выделенных каучуков СКС-30 АРК.

Из приведенных результатов видно, что дополнительное введение в состав образующегося коагулюма волокнополимерного композита из расчета волокнистого материала в количестве 0,1-1,0% на каучук и НПМ в количестве 2-6% на каучук позволяет получить наилучший эффект, заключающийся в достижении максимального выхода коагулюма и улучшении таких свойств вулканизатов как сопротивление многократному растяжению, тепловое старение и температуростойкость.

Таблица 1
Влияние дозировки волокнистого наполнителя и НПМ, температуры коагуляции на расход хлорида натрия и выход образующегося коагулюма
Номер опытов1 23 456 789 1011
Массовая доля волокна, % на               
каучук:               
Хлопкового0 0,050,10,5 1,01,2- -0,50,5 0,5
Вискозного 0-- --- 0,5-- --
Капронового 0- --- --0,5 ---
Массовая доля НПМ, % на каучук 012 468 444 44
Температура коагуляции, °С60 606060 606060 604080 60
Расход хлорида натрия, кг/т каучука175175 176179 174178178 175176177 175
Выход образующегося коагулюма, мас.%94,794,8 96,197,5 97,197,796,3 97,497,0 96,997,6
Массовая доля антиоксиданта, %: ВТС-150 1,21,21,2 1,21,21,2 1,21,21,2 1,2-
ВС-30А -- --- --- --1,5

Таблица 2
Свойства каучуков, резиновых смесей и вулканизатов приготовленных на основе каучука СКС-30 АРК, наполненного НПМ с волокнистыми наполнителями
Показатели Вид волокнистого наполнителя и его дозировка, % на каучук
Контроль, масло ПН-6 без волокна хлопоквискоза капрон
0,1 0,51,0 0,10,5 1,00,1 0,51,0
2,04,06,0
Дозировка НПМ, % на каучук --- 2,04,06,0 2,04,06,0 2,04,06,0
Вязкость по Муни                 
Каучука 53,050,0 47,053,550,5 48,052,0 49,547,554,0 53,049,0
резиновой смеси56,0 55,052,0 58,057,055,0 56,055,0 52,060,059,0 55,0
Пластичность по Карреру р/см усл.ед.0,36 0,380,410,36 0,380,40 0,330,350,36 0,340,35 0,39
Условная прочность при растяжении, МПа24,122,0 20,726,725,2 24,226,9 25,123,927,1 25,824,6
Относительное удлинение при разрыве, % 660690680 670670710 650680690 660685700
Относительная остаточная деформация, % 1112 121010 101211 101211 12
Сопротивление многократному растяжению, тыс.циклов62,9 60,264,265,1 72,569,8 66,975,176,8 82,679,3 77,0
Коэффициент старения (100°С, 72 ч):                
- по прочности 0,500,490,52 0,580,61 0,620,600,63 0,590,68 0,660,71
- по относительному удлинению0,35 0,370,340,38 0,400,42 0,370,410,40 0,420,41 0,43

Класс C08C1/14 коагуляция 

способ получения наполненного бутадиен-стирольного каучука -  патент 2516640 (20.05.2014)
нитрильные каучуки -  патент 2491296 (27.08.2013)
способ получения модифицированных функциональными группами жидкофазно наполненных кремнекислотой эмульсионных каучуков -  патент 2487891 (20.07.2013)
нитрильные каучуки -  патент 2479591 (20.04.2013)
способ выделения бутадиен-нитрильных каучуков из латексов -  патент 2453560 (20.06.2012)
способ выделения бутадиен-(альфа-метил)-стирольного каучука из латекса -  патент 2447087 (10.04.2012)
способ управления процессом выделения эмульсионных каучуков из латексов -  патент 2443714 (27.02.2012)
способ выделения эмульсионных каучуков из латексов -  патент 2351610 (10.04.2009)
способ получения модифицированных наполненных эмульсионных каучуков -  патент 2293741 (20.02.2007)
способ получения наполненного бутадиен-стирольного каучука -  патент 2291161 (10.01.2007)

Класс C08F2/22 эмульсионная полимеризация

тройные сополимеры на основе тетрафторэтилена для термоагрессивостойких материалов -  патент 2528226 (10.09.2014)
сополимеры на основе винилиденфторида для термоагрессивостойких материалов -  патент 2522590 (20.07.2014)
эмульсионный полимеризат, содержащий активаторы, способ его получения, а также его применение в двух- или многокомпонентных системах -  патент 2510405 (27.03.2014)
способ эмульсионной сополимеризации 1-алкенов и виниловых сложных эфиров с высокой степенью превращения и его применение -  патент 2485137 (20.06.2013)
способ получения тонкодисперсного порошка политетрафторэтилена -  патент 2478654 (10.04.2013)
способ получения стабилизированных защитными коллоидами полимеров -  патент 2471810 (10.01.2013)
при необходимости гидрированные нитрильные каучуки, содержащие при необходимости концевые алкилтиогруппы -  патент 2464279 (20.10.2012)
при необходимости гидрированные нитрильные каучуки, содержащие при необходимости концевые алкилтиогруппы -  патент 2464278 (20.10.2012)
способ непрерывной полимеризации -  патент 2459833 (27.08.2012)
полимерные наночастицы, имеющие конфигурацию "ядро-оболочка" и включающие межфазную область -  патент 2458084 (10.08.2012)

Класс C08F236/10 с винилароматическими мономерами

способ получения полимерной основы пропиточного состава для шинного корда -  патент 2527855 (10.09.2014)
катализатор для гидрирования ненасыщенных соединений -  патент 2522429 (10.07.2014)
однореакторный синтез наночастиц и жидкого полимера для областей применения каучуков -  патент 2501731 (20.12.2013)
способ выделения бутадиен-стирольного каучука из латекса -  патент 2497831 (10.11.2013)
способ получения разветвленных функционализированных диеновых (со)полимеров -  патент 2487137 (10.07.2013)
способ выделения бутадиен-(альфа-метил)-стирольного каучука из латекса -  патент 2447087 (10.04.2012)
бромированные бутадиен/винилароматические сополимеры, смеси таких сополимеров с винилароматическим полимером и полимерные пеноматериалы, полученные из таких смесей -  патент 2414479 (20.03.2011)
способ получения сополимеров изопрена со стиролом -  патент 2412210 (20.02.2011)
способ получения модифицирующей добавки литийорганического соединения и способ получения полибутадиена и сополимеров бутадиена со стиролом -  патент 2382792 (27.02.2010)
способ получения полимеров бутадиена и сополимеров бутадиена со стиролом -  патент 2377258 (27.12.2009)
Наверх