способ защиты стали от коррозии

Классы МПК:C23F11/10 путем применения органических ингибиторов 
Автор(ы):, , , ,
Патентообладатель(и):Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (RU),
Бурмистров Александр Сергеевич (RU),
Тен Петр Владимирович (RU)
Приоритеты:
подача заявки:
2005-07-04
публикация патента:

Изобретение относится к способам защиты стали, преимущественно малоуглеродистой, от коррозии в агрессивных водных средах, близких к нейтральным, с помощью добавляемых в них ингибиторов и может быть использовано для защиты от коррозии стального технического оборудования, контактирующего с коррозионной средой. Способ включает введение в агрессивную среду ингибитора, в качестве которого используют водный или щелочной экстракт из растительных отходов, полученных при переработке злаковых культур, который вводят в агрессивную среду в количестве 0,5-1,5 г в пересчете на сухое вещество на литр агрессивной среды, при этом в качестве растительных отходов используют рисовую шелуху, рисовую солому, рисовую мучку, гречневую шелуху. Технический результат: разработка экологически безопасного и более дешевого способа защиты стали от коррозии в агрессивных средах, близких к нейтральным, обеспечение эффективной защиты стали от коррозии. 5 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ защиты стали от коррозии, включающий введение в агрессивную среду ингибитора, содержащего органические соединения, отличающийся тем, что в качестве ингибитора используют водный или щелочной экстракт из растительных отходов, полученных при переработке злаковых культур, который вводят в агрессивную среду в количестве 0,5-1,5 г в пересчете на сухое вещество на литр агрессивной среды.

2. Способ по п.1, отличающийся тем, что в качестве растительных отходов используют рисовую шелуху, рисовую солому, рисовую мучку, гречневую шелуху.

3. Способ по п.1, отличающийся тем, что водные экстракты представляют собой вытяжку из растительных отходов, полученную нагреванием в воде сырья на водяной бане в течение 1-3 ч при массовом соотношении Т:Ж, равном 1:5-10, с последующим отделением полученного раствора и его концентрированием.

4. Способ по п.1, отличающийся тем, что щелочные экстракты представляют собой вытяжку из растительных отходов, полученную обработкой растительных отходов 0,1-1 N раствором гидроксида натрия при температуре 60-90°С в течение 1-3 ч при массовом соотношении Т:Ж, равном 1:5-10, с последующим отделением полученного раствора.

5. Способ по п.1, отличающийся тем, что ингибитор представляет собой водный или щелочной экстракт, полученный как отход со стадии промывки рисовой шелухи в процессе получения из нее диоксида кремния.

6. Способ по п.1, отличающийся тем, что в агрессивную среду дополнительно вводят тетраборат натрия при массовом отношении ингибитора к тетраборату натрия, равном 10:1.

Описание изобретения к патенту

Изобретение относится к защите стали от коррозии в агрессивных, близких к нейтральным водных средах с помощью добавляемых в них ингибиторов и может быть использовано для защиты от коррозии выполненного из стали, преимущественно малоуглеродистой, технического оборудования, контактирующего с коррозионной средой.

Защита металлов от коррозии снижением агрессивности среды с помощью ингибиторов является одним из наиболее простых, доступных и дешевых методов противокоррозионной защиты, основанных на способности определенных химических соединений или их композиций снижать скорость коррозии металла при введении ингибитора в коррозионную среду и соответственно удлинять срок службы оборудования.

Различают ингибиторы кислотной коррозии, щелочной коррозии и ингибиторы для нейтральных сред.

Для защиты различных систем охлаждения, деталей и оборудования в водооборотных системах различного типа, емкостей балластной морской воды на судах и плавучих доках используют, как правило, ингибиторы для нейтральных сред. В качестве таких ингибиторов применяются как индивидуальные неорганические и органические соединения, например, фосфаты, хроматы, молибдаты, вольфраматы, нитриты, другие соли неорганических кислот, алкил- или арилкарбоксилаты, аминокислоты, сульфонаты и алкилфосфаты, так и композиции из нескольких веществ (Химическая энциклопедия, т.2. - М.: Советская энциклопедия, 1990. - 222 с.). Неорганические ингибиторы эффективно подавляют коррозию в нейтральных средах, но являются токсичными и дорогими реагентами. Кроме того, в присутствии ионов хлора они могут провоцировать точечную (локальную или питтинговую) коррозию. Водорастворимые полимеры используются в качестве ингибиторов коррозии обычно в составе ингибиторных композиций и также являются достаточно дорогими реагентами (Защита от коррозии, старения и биоповреждений машин, оборудования и сооружений. Справочник / Под ред. А.А.Герасименко. Т.2. - М.: Машиностроение. 1987, с.295).

Известен способ защиты от коррозии оборудования из сталей при действии агрессивных сред, близких к нейтральным, заключающийся во введении в рабочую водную среду комплексного ингибитора со следующим содержанием компонентов комплексного ингибитора в обрабатываемой среде, г/дм 3: нитрит натрия 100-200; полигексаметиленгуанидин фосфат 10-15; тетраборат натрия 15-20 (пат. РФ №2124579, опубл. 10.01.1999 г.).

В другом способе защиты от коррозии оборудования из сталей при действии агрессивных сред, близких к нейтральным, в рабочую водную среду вводят комплексный ингибитор со следующим содержанием его компонентов в обрабатываемой среде, г/дм 3: нитрит натрия 50-100; водорастворимая карбамидоформальдегидная смола 10-20; ортофосфорная кислота 10-20 (пат. РФ №2124580, опубл. 10.01.1999 г.).

В описанных способах используются ингибиторы, характеризующиеся сравнительно невысокими концентрациями входящих в состав реагентов, что оказывает меньше влияния на окружающую среду, при этом реагенты являются малотоксичными веществами. На примере образцов из стали (в пат. №2124579 - Ст10 и в пат. №2124580 - Ст20) показано, что используемые в способах ингибиторы обеспечивают эффективную защиту от коррозии. При указанных концентрациях скорость коррозии составляла меньше 0,005 мм/год, защитный эффект превышал 95%.

Известен способ защиты от коррозии черных металлов, в частности стали и чугуна, в нейтральных водных средах с использованием ингибирующей композиции, содержащей, мас.%: оксиэтилидендифосфоновую кислоту 25-50, соль цинка в пересчете на Zn+2 25-50, растворимую соль алюминия в пересчете на Al3+ 25-50. Данный комплексный ингибитор защищает от коррозии сталь марки Ст3 и чугун С412-48 в охлаждающих жидкостях при температурах 65-96°С на 98-100% (а.с. СССР №1311287, опубл. 10.06.1996 г.).

К общим недостаткам известных способов защиты от коррозии относится то, что используемые в них ингибирующие композиции являются многокомпонентными, а химические реагенты, входящие в состав ингибиторов, как правило, достаточно дорогостоящими и экологически небезопасными.

В связи с этим разработка способов защиты от коррозии с использованием нетоксичных, более дешевых и простых по технологии получения веществ-ингибиторов для защиты сталей от коррозии является весьма актуальной.

Задачей изобретения является разработка более дешевого, экологически безопасного способа защиты стали от коррозии в агрессивных средах, близких к нейтральным, обеспечивающего эффективную защиту от коррозии.

Поставленная задача решается предлагаемым способом защиты стали от коррозии, предусматривающим использование в качестве ингибитора водного или щелочного экстракта из растительных отходов, получаемых при переработке злаковых культур, которые вводят в водную агрессивную среду в количестве 0,5-1,5 г в пересчете на сухое вещество на литр агрессивной среды.

В качестве исходного растительного сырья, подвергаемого водной или щелочной экстракции, могут быть использованы отходы, получаемые при переработке риса или гречихи, например рисовая шелуха и рисовая мучка, рисовая солома, гречневая шелуха.

Установлено, что водный или щелочной экстракты из указанных растительных отходов проявляют выраженные ингибирующие свойства и могут быть эффективно использованы для снижения скорости коррозии, в частности, малоуглеродистой стали в водных средах, близких к нейтральным.

Водный экстракт представляет собой вытяжку из растительных отходов, полученную нагреванием сырья в воде на водяной бане (не доводя до кипения) в течение 1-3 часов при массовом соотношении Т:Ж (твердое : жидкое), равном 1:5-10, с последующим отделением полученного раствора и его концентрированием, например, упариванием на роторном испарителе. Для более полного удаления остатков сырья полученный раствор дополнительно центрифугируют. Плотность получаемого водного экстракта составляет 0,99-1,1 г/л.

Щелочной экстракт представляет собой вытяжку из растительных отходов плотностью 1,2-1,4 г/л, полученную обработкой растительных отходов 0,1-1 N раствором гидроксида натрия при температуре 60-90°С в течение 1-3 часов при массовом соотношении Т:Ж (твердое : жидкое), равном 1:5-10, с последующим отделением полученного раствора.

Экономически целесообразной является возможность использования в качестве экстракта-ингибитора растворов, получаемых на стадии промывки рисовой шелухи в качестве отхода при подготовке рисовой шелухи к сжиганию с целью получения аморфного диоксида кремния.

Исследование исходного растительного сырья показало, что основными органическими фракциями, содержащимися в нем, являются полисахариды, липиды, соли инозитгексафосфорной кислоты (фитин), имеющие различные функциональные группы, включающие атомы кислорода и фосфора. Это и определяет качественный состав предлагаемых в качестве ингибиторов коррозии водных и щелочных экстрактов названных выше отходов переработки риса и гречихи.

При экстракции сырья наряду с органическими веществами в раствор извлекаются также металлы, содержащиеся в сырье (например, катионы кальция, цинка, марганца, меди), однако их концентрация в экстракте очень мала для того, чтобы сказываться на ингибирующем действии водного экстракта в целом.

Водные экстракты рисовых отходов содержат, главным образом, водорастворимые полисахариды, флавоноиды, фосфорорганические вещества, а щелочные экстракты - полисахариды, растворимые в щелочи и имеющие отличный от водорастворимых полисахаридов состав, продукты омыления эфиров жирных кислот и кремнийсодержащие вещества, растворимые при рН>7, входящие в основном в состав рисовых отходов.

В водных экстрактах всех отходов риса (шелуха, солома, мучка) полисахариды представлены в основном глюканами. Полисахариды в щелочных экстрактах содержат остатки арабинозы, ксилозы, глюкозы, галактозы. Полисахариды из рисовой мучки представляют собой в основном глюканы независимо от способа экстракции.

Полисахариды водной экстракции из гречневой шелухи отличаются повышенным содержанием глюкозы, довольно большим содержанием галактозы и маннозы. Уроновые кислоты в основном представлены галактуроновой кислотой, инозит (продукт переработки фитиновой кислоты) находится в следовых количествах.

Экспериментально установлено, что оптимальное количество вводимых в агрессивную водную среду в качестве ингибиторов водного или щелочного экстрактов составляет на один литр среды 0,5-1,5 г ингибитора в пересчете на сухое вещество. Данное количество обусловлено тем, что при введении меньшего количества ингибитора не достигается эффективной защиты, хотя защитное действие ингибитора проявляется с концентрации выше 0,25 г/л, а введение ингибитора в количестве более 1,5 г/л не ведет к увеличению степени защиты, в связи с чем нецелесообразно.

Для изучения ингибирующей способности веществ, входящих в состав эстрактов-ингибиторов, были проведены эксперименты с отдельными растворами полисахаридов, предварительно выделенных в твердом виде с помощью ультрафильтрации из водного экстракта рисовой шелухи. Дополнительно из этого же образца рисовой шелухи путем двухстадийной термической обработки по способу, описанному в пат. РФ №2061656, был получен аморфный диоксид кремния, который далее растворяли в 2 н. растворе NaOH, получая раствор силиката натрия - Na2SiO3, который также проверялся на ингибирующую способность.

Было установлено, что при использовании в качестве ингибитора полисахаридов, выделенных из водного экстракта, степень защиты от коррозии составила 36%. При применении раствора силиката натрия в качестве ингибитора в течение первых двух недель эксперимента степень защиты составила 67,8%, но при дальнейшем выдерживании образца появились признаки язвенной коррозии, которая в дальнейшем привела к значительной потере его массы.

Полученные результаты позволяют сделать вывод о том, что ингибирующий эффект, оказываемый экстрактами отходов производства риса и гречихи на коррозионный процесс малоуглеродистой стали Ст3, обусловлен действием не отдельных веществ - полисахаридов, входящих в состав экстрактов, или силиката натрия, а в целом комплексом соединений, экстрагируемых из растительных отходов.

Эффективность предлагаемого способа защиты стали от коррозии с использованием в качестве ингибиторов водных или щелочных экстрактов из растительных отходов, полученных при переработке злаковых культур, была проверена на образцах из малоуглеродистой стали Ст3 в 3%-ном растворе хлорида натрия (модельный раствор морской воды) и в водопроводной воде.

Проверка ингибирующих свойств экстрактов проводилась в стационарном режиме при полном погружении образцов для разных видов экстрактов с экспозицией в пределах трех месяцев с промежуточным обследованием образцов через определенные интервалы времени. Перед началом испытаний образцы тщательно зачищали, полировали, протравливали в 10%-ном растворе серной кислоты с добавкой тиокарбамида, обезжиривали ацетоном и взвешивали. После испытаний образцы вынимали из раствора, тщательно удаляли продукты коррозии, высушивали и снова взвешивали.

Скорость коррозии определяли гравиметрическим методом с использованием аналитических весов ВЛР-200 и рассчитывали по формуле:

способ защиты стали от коррозии, патент № 2289639

где способ защиты стали от коррозии, патент № 2289639 m - изменение массы, г; способ защиты стали от коррозии, патент № 2289639 - плотность образца, г/см3; S - площадь образца, см2; t - время, сутки.

Степень защиты рассчитывали по формуле:

способ защиты стали от коррозии, патент № 2289639

где К0 - массовый показатель скорости коррозии в среде без ингибитора, г/м2·час, К - массовый показатель скорости коррозии в среде с ингибитором.

В таблице 1 приведены результаты исследований ингибирующего действия водных и щелочных экстрактов из различных отходов производства риса на коррозию малоуглеродистой стали Ст3 в модельном растворе морской воды при концентрации ингибитора в среде 0,5 г/л в пересчете на сухое вещество и в водопроводной воде при концентрации ингибитора в среде 1,5 г/л.

В таблице 2 приведены результаты исследований ингибирующего действия на коррозию малоуглеродистой стали Ст3 водного экстракта, полученного из гречневой шелухи, при концентрации экстракта 0,5 г в пересчете на сухое вещество на литр агрессивной среды, и смеси этого экстракта с тетраборатом натрия (Na 2B4O7), взятыми в массовом отношении 10:1.

Как следует из данных таблиц 1 и 2, применение в качестве ингибитора коррозии стали водных и щелочных экстрактов из отходов производства риса и гречихи снижает скорость коррозии как в водопроводной воде, так и в модельном растворе морской воды, достигая в оптимальных случаях степени защиты до 99%.

На примере использования в качестве ингибитора экстракта из гречневой шелухи (табл.2) показано, что в частных случаях осуществления изобретения добавка тетрабората натрия в экстракт в массовом отношении 10:1 вызывает повышение ингибирующего эффекта, приводя к 100%-ой степени защиты в водопроводной воде и увеличению степени защиты по сравнению с использованием одного экстракта до 87% в модельном растворе морской воды.

Таким образом, техническим результатом предлагаемого изобретения является создание эффективного, экологически безопасного и менее дорогостоящего способа защиты стали от коррозии, что обусловлено использованием в качестве ингибитора - водного или щелочного экстрактов из растительных отходов, получаемых при переработке злаковых культур. Кроме того, при этом решаются задачи по расширению круга ингибирующих средств и утилизации растительных отходов, получаемых при переработке злаковых культур.

Таблица 1
 Агрессивная среда - модельный раствор морской воды
Время испытаний,

сут.
Без ингибитора Ингибитор - водный экстракт рисовой шелухиИнгибитор - водный экстракт рисовой мучкиИнгибитор - щелочной экстракт рисовой шелухи
Скорость коррозии, мкм/годСкорость коррозии, мкм/годСтепень защиты, % Скорость коррозии, мкм/годСтепень защиты, %Скорость коррозии, мкм/год Степень защиты, %
1022022 9020 911,699
20280 408650 824,0 98
30320 6081 80752,4 99
40 30092 6972 762,099
Агрессивная среда - водопроводная вода
  Без

ингибитора
Ингибитор - водный экстракт рисовой шелухи
Скорость коррозии, мкм/годСтепень защиты, %
30 708 88
7290 891
Таблица 2
Тип ингибитораМодельный раствор морской водыВодопроводная вода
Скорость коррозии, мкм/год Степень защиты, % Скорость коррозии, мкм/годСтепень защиты, %
Среда без ингибитора 122,0  82,0  
Водный экстракт шелухи гречихи31,0 7514,083
Смесь водного экстракта шелухи гречихи и Na2B4О 7 (10:1)16,0 870,0100

Класс C23F11/10 путем применения органических ингибиторов 

керамические частицы и композиции покрытий, включающие упомянутые частицы -  патент 2524575 (27.07.2014)
замедляющая коррозию композиция для цветных металлов -  патент 2483099 (27.05.2013)
состав для предотвращения отложений неорганических солей -  патент 2447197 (10.04.2012)
способ получения композиций полиэфиров арилдитиофосфоновых кислот и их аммониевых солей из гиперразветвленных полиэфирполиолов, композиции полиэфиров арилдитиофосфоновых кислот и их аммониевые соли, обладающие антикоррозионной активностью -  патент 2427584 (27.08.2011)
способ получения длинноцепных s-алкиловых эфиров о, о-диалкилдитиофосфорных кислот, обладающих антикоррозионной активностью -  патент 2337913 (10.11.2008)
способ получения ингибитора коррозии -  патент 2326990 (20.06.2008)
меченые ингибирующие образование накипи полимеры, содержащие их композиции и способ предотвращения или регулирования образования накипи -  патент 2315778 (27.01.2008)
ингибитор коррозии для низкозамерзающих охлаждающих жидкостей -  патент 2302479 (10.07.2007)
композиция для антикоррозионного и гидроизоляционного покрытия -  патент 2281985 (20.08.2006)
n,n-бис(фосфатометилен)-n'-гидроксиметилен-n'-(фосфонитометилен)тиомочевина в качестве ингибитора коррозии и биоцида -  патент 2280642 (27.07.2006)
Наверх