биосовместимые многокомпонентные наноструктурные покрытия для медицины

Классы МПК:A61L27/02 неорганические материалы
A61K6/02 использование препаратов для изготовления искусственных зубов, для пломбирования или покрытия зубов
Автор(ы):, , ,
Патентообладатель(и):Левашов Евгений Александрович (RU),
Штанский Дмитрий Владимирович (RU),
Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) (RU)
Приоритеты:
подача заявки:
2005-06-30
публикация патента:

Изобретение относится к медицинской технике, а именно к биосовместимым износостойким наноструктурным тонкопленочным материалам, используемым в качестве покрытий при изготовлении имплантатов, работающих под нагрузкой: ортопедические и стоматологические протезы, зубные коронки, имплантаты, используемые в челюстно-лицевой хирургии, искусственные сочленения, фиксаторы и др. Эти материалы должны обладать высокой твердостью, усталостной прочностью, износо- и коррозионной стойкостью, биосовместимостью и отсутствием токсичности. В изобретении достигается технический результат, заключающийся в создании многокомпонентного наноструктурного покрытия (МНП), обладающего высокой твердостью, низким модулем упругости, высокой прочностью сцепления с подложкой, низким коэффициентом трения и скоростью износа, высокой стойкостью к упругой деформации разрушения и пластической деформации, низкой шероховатостью поверхности, отрицательным зарядом поверхности в физиологических средах (4,5<рН<9), биоактивной поверхностью, биосовместимостью и отсутствием токсичности. Указанный технический результат достигается следующим образом. Биосовместимые многокомпонентные наноструктурные покрытия для имплантатов, работающие под нагрузкой, выполнены на основе карбонитрида титана с введением дополнительных элементов, улучшающих механические и трибологические свойства покрытия, а также обеспечивающих его биоактивность, биосовместимость и нетоксичность. Суммарные концентрации основных и дополнительных элементов в покрытии имеют следующее соотношение: биосовместимые многокомпонентные наноструктурные покрытия для   медицины, патент № 2281122

где Xi - суммарная концентрация основных элементов Ti, С, N в покрытии, Yj - суммарная концентрация дополнительных элементов Са, Zr, Si, К, Mn, О, Р в покрытии, при этом концентрацию элементов в покрытии выбирают при следующем соотношении компонентов, ат. %: Ti 30-50, С 15-40, N 0.5-30, О 5-25, Са 0-7, Zr 0-20, Si 0-30, Р 0-1.5, Mn 0-1.0, К 0-1.0. 1 табл.

Формула изобретения

Биосовместимые многокомпонентные наноструктурные покрытия для имплантатов, работающих под нагрузкой, на основе карбонитрида титана с введением дополнительных элементов, улучшающих механические и трибологические свойства покрытия, а также обеспечивающих его биоактивность, биосовместимость и нетоксичность, при следующем соотношении суммарных концентраций основных и дополнительных элементов:

биосовместимые многокомпонентные наноструктурные покрытия для   медицины, патент № 2281122

где Xi - суммарная концентрация основных элементов Ti, С, N в покрытии;

Yj - суммарная концентрация дополнительных элементов Са, Zr, Si, К, Mn, О, Р в покрытии,

при этом концентрацию элементов в покрытии выбирают при следующем соотношении компонентов, ат.%:

Ti 30-50
С 15-40
N 0,5-30
О 5-25
Са 0-7
Zr 0-20
Si 0-30
Р 0-1,5
Mn 0-1,0
К 0-1,0

Описание изобретения к патенту

Изобретение относится к медицинской технике, а именно к биосовместимым износостойким наноструктурным тонкопленочным материалам, используемым в качестве покрытий при изготовлении имплантатов, работающих под нагрузкой: ортопедические и стоматологические протезы, зубные коронки, имплантаты, используемые в челюстно-лицевой хирургии, искусственные сочленения, фиксаторы и др. Эти материалы должны обладать высокой твердостью, усталостной прочностью, износо- и коррозионной стойкостью, биосовместимостью и отсутствием токсичности.

Известно биосовместимое покрытие на имплантат из титана и его сплавов (RU 2154463, опублик. 20.08.2000), содержащее оксид титана, кальцийфосфатные соединения (пересчет на оксиды) при следующем соотношении компонентов, мас.%:

Оксид титана 52-74

Оксид кальция 6-12

Оксид фосфора 20-36

Однако биоактивная керамика не пригодна в качестве покрытий на поверхности имплантатов, работающих под нагрузкой, вследствие низкой трещиностойкости.

Известно биосовместимое покрытие на основе нитрида титана и карбида натрия (SU 1803096, опублик. 23.03.93) при следующем соотношении компонентов, мас.%:

Нитрид титана 20-50

Силицид титана 2-5

Гидрированный карбид натрия 25-30

Оксиды кремния остальное

Данное покрытие обладает повышенной прочностью сцепления пластмассы с металлической основой в ортопедической стоматологии, однако не обладает достаточно высокой износостойкостью, необходимой для долгого срока службы, и требуемыми остеоиндуктивными свойствами.

Прототипом заявленного изобретения является покрытие с аморфным слоем гидрооксиапатита и титана (патент US №6344276, опубл. 05.02.02).

Данное покрытие имеет повышенную прочность его соединения с субстратом и низкую скорость растворения материала покрытия, однако оно не обладает всем комплексом физических, механических, химических и биологических свойств, необходимых для материала имплантата, работающего под нагрузкой.

В изобретении достигается технический результат, заключающийся в создании многокомпонентного наноструктурного покрытия (МНП), обладающего высокой твердостью, низким модулем упругости, высокой прочностью сцепления с подложкой, низким коэффициентом трения и скоростью износа, высокой стойкостью к упругой деформации разрушения и пластической деформации, низкой шероховатостью поверхности, отрицательным зарядом поверхности в физиологических средах (4,5<рН<9), биоактивной поверхностью, биосовместимостью и отсутствием токсичности.

Указанный технический результат достигается следующим образом.

Биосовместимые многокомпонентные наноструктурные покрытия для имплантатов, работающие под нагрузкой, выполнены на основе карбонитрида титана с введением дополнительных элементов, улучшающих механические и трибологические свойства покрытия, а также обеспечивающих его биоактивность, биосовместимость и нетоксичность. Суммарные концентрации основных и дополнительных элементов в покрытии имеют следующее соотношение:

биосовместимые многокомпонентные наноструктурные покрытия для   медицины, патент № 2281122

где Xi - суммарная концентрация основных элементов Ti, C, N в покрытии,

Yj - суммарная концентрация дополнительных элементов Са, Zr, Si, К, Mn, О, Р в покрытии.

При этом концентрацию элементов в покрытии выбирают при следующем соотношении компонентов, ат. %:

Ti 30-50

С 15-40

N 0.5-30

О 5-25

Са 0-7

Zr 0-20

Si 0-30

Р 0-1.5

Mn 0-1.0

К 0-1.0

Необходимое сочетание физических, механических, химических, трибологических и биологических свойств биосовместимых МНП достигается за счет включения в состав покрытий компонентов в количественных соотношениях, указанных выше.

Карбонитрид титана обладает высокой твердостью, износо- и коррозионной стойкостью.

Осаждение покрытий в среде аргона приводит к формированию грубой столбчатой структуры с повышенной пористостью. Содержание в составе покрытия азота приводит к измельчению и уплотнению структуры, а в отдельных случаях и к полному подавлению колонной структуры. Размер кристаллитов, как правило, не превышает 20 нм. Шероховатость пленок снижается при введении азота в состав покрытия.

Оптимальным является отношение металлических (Me) к неметаллическим элементам (NMe) Me/NMe=1.0-1.7, при котором покрытия имели кубическую структуру типа NaCl.

Образование слоя апатита связывается с формированием гидроксил функциональных групп на отрицательно заряженной поверхности биоактивной керамики во внутренней среде организма. Для этого в покрытие вводятся такие элементы, как Са, Р и О в заявляемом количестве. Наличие ионов кальция стимулирует рост клеток на поверхности имплантата. Увеличение содержания Са, Р и О свыше заявляемого количества приводит к снижению механических и трибологических свойств покрытий, а также к разрушению актинового цитоскелета клеток и ухудшению адгезионных свойств поверхности (таблица).

Во всем исследованном диапазоне значений рН (4,5<рН<9) поверхность МНП имеет отрицательный заряд. Покрытия с азотом, как правило, имеют более отрицательный заряд поверхности. Это означает, что поверхность покрытий может притягивать положительно заряженные ионы Са2+, которые находятся во внутренней среде организма, что способствует образованию сначала промежуточных, кальцийсодержащих фаз, а затем слоя гидроксиапатита, который является устойчивой фазой в физиологической среде.

Введение в покрытия элементов Са, Zr и О приводит к существенному снижению коэффициента трения до 0.17-0.25 по сравнению с покрытиями на основе карбида (0.85) или нитрида (0.55) титана.

Прикрепление клеток к поверхности имплантата определяется образованием интегрин-опосредованных фокальных контактов клеток с подлежащей поверхностью. Добавка Mn в количестве <1 ат.% приводит к активации интегринов и улучшению адгезии клеток. Дальнейшее увеличение содержания Mn приводит к снижению механических свойств покрытий и уменьшению распластывания и размножения клеток. Кремний способствует увеличению активности остеобластов и образованию слоя апатита. При его содержании менее 30 ат.% покрытия обладают однофазной гранецентрированной кубической структурой типа NaCl, что благоприятно сказывается на механических и трибологических свойствах.

Композиционные мишени и электроды могут быть получены методом самораспространяющегося высокотемпературного синтеза (СВС). В отличие от других известных методов получения композиционных катодов из тугоплавких соединений (прессование-спекание, газостатическое прессование, газотермическое напыление и др.) технология СВС имеет следующие преимущества: самоочистка продуктов горения от вредных растворимых и адсорбированных примесей в результате достижения высоких значений температуры (2500-3000°С) и скорости горения (2-10 см/с), развиваемых в волне горения СВС-систем; достижение высоких значений относительной плотности (97-99%) керамических материалов и тугоплавких соединений при сравнительно низких давлениях прессования; получение метастабильных состояний - пересыщенных твердых растворов; получение функциональных градиентных материалов (Левашов Е.А., Рогачев А.С., Юхвид В.И., Боровинская И.П. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза, М., БИНОМ, 1999, 174 с).

При этом неорганические добавки, например гидроксилапатит (Са 10(PO4)6(ОН)2), CaO, ZrO 2, KMnO4 и TiO2 и др., могут вводиться на этапе получения композиционных катодов-мишеней для ионно-плазменного и/или ионно-лучевого распыления и электродов для электроискрового осаждения.

Основным технологическим преимуществом биосовместимых МНП является наличие целого комплекса свойств, необходимых для материалов-имплантатов, работающих под нагрузкой:

- высокая твердость Н=15-35 ГПа;

- низкий модуль упругости Е=150-300 ГПа;

- высокая адгезия покрытия к подложке, измеряемая величиной критической нагрузки Lc -не ниже 35 Н

- низкий коэффициент трения биосовместимые многокомпонентные наноструктурные покрытия для   медицины, патент № 2281122 =0.1-0.25;

- низкая скорость износа Vw - менее 5·10-6 мм3/Нм;

- высокая стойкость к упругой деформации разрушения и пластической деформации 0.1<H3/E2<0.9 ГПа;

- отрицательный заряд поверхности в физиологических средах;

- отсутствие разрушения актинового цитоскелета клеток при наличии биоактивности поверхности, биосовместимости и отсутствии токсичности.

Отклонение хотя бы по одному из приведенных выше свойств покрытий влечет за собой ухудшение служебных характеристик всего изделия (имплантата) в целом.

Низкий модуль упругости покрытий благоприятен с точки зрения уменьшения напряжений между покрытием и имплантатом, в качестве которого часто используется нержавеющая сталь Е=190-200 ГПа или титан Е=116 ГПа. Низкий модуль Юнга также приводит к лучшему переносу костью функциональных нагрузок и стимулирует нарастание костной ткани. Комбинация высокой твердости и упругого восстановления характеризует МНП как новый уникальный твердый и в то же время упругий материал, что является важнейшим фактором для материалов медицинского назначения, работающих под нагрузкой.

Изобретение осуществляют следующим образом.

Пример 1.

Технологический цикл получения биосовместимого МНП Ti-Zr-C-O-N состоит из двух основных стадий: получение композиционной мишени TiC0.5+ZrO2, например, методом самораспространяющегося высокотемпературного синтеза (СВС) и ее последующее магнетронное распыление на подложку.

Осаждение покрытия Ti-Zr-C-O-N осуществляли в газовой среде Ar+N2. Получено покрытие следующего состава, ат.%:

С 18.0

O 7.9

N 27.6

Ti 44.5

Zr 2.0

Для измерения физико-механических и трибологических свойств МНП осаждались на подложки из титанового сплава марки ВТ 1-0, никелевого сплава Целит-Н, кобальтового сплава Целит-К, а также никелида титана.

Физико-механические и трибологические свойства МНП определялись при использовании следующих высокопрецизионных приборов: Нанотвердомер (Nano-Hardness Tester, CSM Instruments, Швейцария); Скратч-тестер (Revetest, CSM Instruments, Швейцария); Машина трения (Tribometer, CSM Instruments, Швейцария); Сканирующий силовой микроскоп, оборудованный модулем для измерения твердости материалов по методу склерометрии с помощью игл из ультратвердого фуллерита С60 (NanoScan, Россия); Оптический микроскоп AXIOVERT, оборудованный цифровой камерой и системой анализа изображения (Карл Цейс, Германия). Твердость и модуль упругости определялись по методу Оливера и Фара [G.M.Pharr, W.C.Oliver, F.R.Brotzen. J. Mater. Res. 3, 613 (1992)] с использованием индентора Берковича. Величину упругого восстановления (W e) покрытий рассчитывали по кривым нагружение-разгрузка по формуле We=(hmax-hr)/h max, где hmax - максимальная глубина проникновения индентора, a hr - остаточная глубина после снятия нагрузки. Коэффициент трения и скорость износа покрытий измерялись с помощью машины трения по схеме "шарик-диск" при нагрузке 1 N и линейной скорости 10 см/с. Испытания проводились в физиологическом растворе (100 мл H2O + 0.9 г NaCl). В качестве контртела использовался неподвижный шарик из спеченного Al2О 3 диаметром 3 мм.

Полученное покрытие имело твердость 37 ГПа, модуль упругости 270 ГПа, упругое восстановление 70%, коэффициент трения 0.16 и скорость износа 10-6 мм 3/Нм.

Разрушения актинового цитоскелета клеток не обнаружено. Крысиные фибробласты Rat-1 и эпителиоциты IAR-2 рассеивали на поверхность пленок, осажденных на стекла. Клетки инкубировали 24, 48 и 72 часа при температуре 37°С. Стекла фиксировали в 3.7% параформальдегиде на фосфатном буфере в течение 10 мин, после чего окрашивали гематоксилином и заключали в смесь глицерина с фосфатным буфером. С помощью световой микроскопии подсчитывали количество клеток в поле зрения. Клетки распластывались и размножались одинаково хорошо как на контрольных стеклах, так и на тестируемых покрытиях, что свидетельствует о том, что покрытия адгезионны и нетоксичны для клеток.

Эксперименты in-vivo проводились на мышах. Образцы из тефлона с осажденными на них покрытиями вводились под кожу мышей. Через 16 недель имплантат с образовавшейся вокруг него капсулой извлекали и исследовали на биосовместимость. Результаты исследований показали отсутствие воспалительной реакции внутри капсулы, а клетки тканей плотно прилегали к поверхности покрытий.

Пример 2.

Осаждение МНП осуществляли путем магнетронного распыления композиционной СВС мишени TiC0.5 +CaO в атмосфере аргона. Композиционная мишень содержала азот в количестве 3,3 ат.% вследствие активного взаимодействия титана с азотом при осуществлении химической реакции в режиме горения на воздухе. Получено покрытие следующего состава, ат.%:

С 30.2

O 22.9

N 3.3

Ti 38.2

Ca 5.4

Полученное покрытие имело твердость 31 ГПа, модуль упругости 220 ГПа, упругое восстановление 70% и коэффициент трения 0.17.

Разрушения актинового цитоскелета клеток не обнаружено. Исследования in-vitro и in-vivo показали, что покрытие Ti-Ca-C-O-N является биосовместимым, нетоксичным, не вызывает воспалительной реакции при его имплантации под кожу мышей. Клетки фибробластов и эпителиоцитов хорошо размножались и обладали высокой адгезией к поверхности покрытия.

Примеры 3-16.

Для оптимизации состава МНП были проведены многочисленные эксперименты по получению катодов-мишеней различных составов и осаждению покрытий по технологии магнетронного распыления. В таблице в обобщенном виде представлены результаты исследований и свойства МНП, подтверждающие правомерность заявляемых составов МНП.

МНП обладают одним или несколькими конкурентными преимуществами, необходимыми для материалов имплантатов, работающих под нагрузкой: высокой твердостью; низким модулем упругости; высокой адгезией; низким коэффициентом трения и скоростью износа; высокой стойкостью к упругой деформации разрушения и пластической деформации; низкой шероховатостью поверхности; отрицательным зарядом поверхности в физиологических средах (4,5<рН<9); биоактивной поверхностью; биосовместимостью и отсутствием токсичности.



Элементный состав и свойства покрытий
Элементный составН, ГПа Е, ГПаLс , НWe, % биосовместимые многокомпонентные наноструктурные покрытия для   медицины, патент № 2281122 Vw 10-6 мм3/Нм Разрушение актинового цитоскелета клеток
Ti СNО СаZrSi MnКР
Оптимальные покрытия, соответствующие заявляемому составу
1 38.230.23.3 22.95.4- --- -31220 40700.17 1.0-
2 32.525.6 17.019.35.6 --- --16 1604253 0.211.2-
347.1 33.73.014.0 -2.2- --- 2827050 580.161.0 -
444.5 18.027.6 7.9-2.0 --- -37270 46700.16 0.9-
5 41.816.5 26.612.61.8 --- -0.727 2404066 0.214.0-
647.0 22.023.27.0 0.6-- --0.2 2223044 610.244.8 -
743.7 36.6- 15.23.7- -0.60.2 -16180 38570.2 4.2-
8 38.122.8 22.812.83.0   0.4 0.1  1516039 560.23.8 -
934.1 -22.8 16.0-2.1 25.0-- -26250 45600.4 4.0-
Неоптимальные составы, за пределами заявляемых диапазонов
1053.0 12.035.0- --- --- 2245032 550.555.2 +
1155.0 13.219.5 2.58.8- --- -11120 40450.5 6.7+
12 36.09.3 23.08.0- 23.7-- --13 1403751 0.425.8-
1344.2 13.123.210.1 7.6- --- 1.88115 30480.38 7.4+
14 41.717.4 31.63.23.5 --1.4 1.2-11 1202549 0.456.2+
1551.5 -4.17.2 -4.832.4 --- 68032 450.57.0 +
1633.2 12.120.8 28.55.4- --- -10.5130 20490.35 5.6+
Н - твердость, Е - модуль упругости, Lc - критическая нагрузка. We - упругое восстановление, биосовместимые многокомпонентные наноструктурные покрытия для   медицины, патент № 2281122 - коэффициент трения, Vw - скорость износа.

Скачать патент РФ Официальная публикация
патента РФ № 2281122

patent-2281122.pdf

Класс A61L27/02 неорганические материалы

многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом -  патент 2524654 (27.07.2014)
способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях -  патент 2523453 (20.07.2014)
способ изготовления внутрикостных имплантатов с антимикробным эффектом -  патент 2512714 (10.04.2014)
покрытие на имплант из титана и его сплавов и способ его приготовления -  патент 2502526 (27.12.2013)
способ модифицирования титановой поверхности -  патент 2495678 (20.10.2013)
композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов -  патент 2484850 (20.06.2013)
способ получения нетоксичного пористого имплантата из полимолочной кислоты для замещения костных дефектов длинных трубчатых костей -  патент 2465017 (27.10.2012)
способ изготовления внутрикостного стоматологического имплантата с ионно-лучевой модификацией плазмонапыленного многослойного биоактивного покрытия -  патент 2458707 (20.08.2012)
костно-протезный материал и способ его изготовления -  патент 2457000 (27.07.2012)
способ изготовления внутрикостных имплантатов -  патент 2443434 (27.02.2012)

Класс A61K6/02 использование препаратов для изготовления искусственных зубов, для пломбирования или покрытия зубов

заготовка для получения стоматологических/одонтологических устройств, а именно для штифтов, культевых вкладок и зубных коронок -  патент 2527325 (27.08.2014)
полировочная паста для термопластических полимеров стоматологического назначения -  патент 2525434 (10.08.2014)
многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом -  патент 2524654 (27.07.2014)
зубной герметик -  патент 2493812 (27.09.2013)
способ получения чистой устойчивой суспензии высокодисперсной гидроокиси кальция -  патент 2488559 (27.07.2013)
состав для пломбирования корневых каналов зубов -  патент 2481817 (20.05.2013)
состав стоматологический для лечения гиперестезии зубов -  патент 2467739 (27.11.2012)
состав для пломбирования зубов -  патент 2463034 (10.10.2012)
композиции лака для зубов, включающие обесцвеченный шеллак и шеллачный воск, используемые в стоматологии и в уходе за зубами -  патент 2462227 (27.09.2012)
поликомпонентная паста для лечения глубокого кариеса и острого очагового пульпита зубов -  патент 2446786 (10.04.2012)
Наверх