способ получения брикетов из дисперсных материалов

Классы МПК:C22B1/243 неорганическими
C22B1/248 металлического лома или сплавов
Автор(ы):, , , ,
Патентообладатель(и):Южно-Уральский государственный университет (RU)
Приоритеты:
подача заявки:
2004-07-28
публикация патента:

Изобретение относится к области металлургии, преимущественно получению брикетов из дисперсных материалов, образующихся при дроблении ферросилиция и его фракционировании. Компоненты смеси, состоящей преимущественно из дисперсного кремнийсодержащего наполнителя - основная часть смеси, а также из порошкообразного компонента связующего и водного 10-30%-го раствора каустической соды, дозируют, осуществляют их смешивание, прессование и упрочнение. В качестве порошкообразного компонента связующего используют саморассыпающийся шлак феррохромового производства в количестве 3-25%. Раствор каустической соды перед дозированием нагревают до температуры 30-100°С. Изобретение позволит повысить прочность брикетов, сократить время их упрочнения, уменьшить потери активного кремния в брикетах, повысить их растворимость в расплавленных металлах и сплавах. 1 табл.

Формула изобретения

Способ получения брикетов из дисперсных материалов, включающий дозирование компонентов смеси, состоящей, преимущественно, из дисперсного кремнийсодержащего наполнителя - основная часть смеси, а также из порошкообразного компонента связующего и водного 10-30%-го раствора каустической соды, их смешивание, прессование и упрочнение, отличающийся тем, что в качестве порошкообразного компонента связующего используют саморассыпающийся шлак феррохромового производства в количестве 3-25%, а раствор каустической соды перед дозированием нагревают до температуры 30-100°С.

Описание изобретения к патенту

Изобретение относится области металлургии, преимущественно к получению брикетов из дисперсных материалов, образующихся при дроблении ферросилиция и его фракционировании.

Известен способ изготовления брикетов из порошкообразных отходов ферросилиция, включающих дозирование дисперсного ферросилиция, смешивание его с жидким стеклом, прессование полученной смеси, сушку и упрочнение брикетов (Федоренко Н.В. и др. Рациональное использование некондиционных и дисперсных фракций сплавов кремния. Производство стали и ферросплавов. Теория и практика. Юбилейный сборник научных трудов. - Челябинск, ЮУрГУ, 1998, с.152-165).

Недостатками известного способа являются малая прочность брикетов, длительная их сушка, высокие потери активного кремния в брикетах, недостаточная растворимость брикетов в расплавленных металлах.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ получения брикетов, включающий дозирование компонентов шихты, состоящей из дисперсных фракций кремнийсодержащих ферросплавов и связующего вещества, их перемешивание, прессование шихты, сушку и упрочнение брикетов, в котором в качестве связующего вещества используют сверхдисперсный кремнезем, получаемый в системах газоочистки при производстве кремнистых ферросплавов, в количестве 3-5% от массы шихты, а увлажнение шихты до 6-8% проводят в течение 120-180 секунд непосредственно перед прессованием 10-30% водным раствором каустической соды (RU, 2156814 С1, 19.10.1999).

Недостатками данного способа являются: необходимость проведения операции длительной сушки брикетов для формирования требуемой их прочности; использование дефицитного дорогостоящего сверхдисперсного кремнезема, который в силу своей легковесности (160-200 кг/м 3) при загрузке в смеситель сильно распыляется и ухудшает экологию окружающей среды, а при использовании вытяжной вентиляции имеют место большие его потери с уносом и энергозатраты на вентиляцию; применение избыточного от 6 до 8% количества высококонцентрированного (10-30%) щелочного раствора, который в присутствии сверхдисперсного кремнезема увеличивает потери активного кремния в брикетах ферросилиция, длительная растворимость брикетов в расплавленных металлах.

Задачей изобретения является повышение прочности брикетов, сокращение времени их упрочнения, уменьшение потерь активного кремния в брикетах, повышение их растворимости в расплавленных металлах и сплавах, улучшение экологии окружающей среды.

Задача решается тем, что в способе получения брикетов из дисперсных материалов, включающем дозирование компонентов смеси, состоящей преимущественно из дисперсного кремнийсодержащего наполнителя (основная часть смеси), а также из порошкообразного компонента связующего и водного 10-30%-ного раствора каустической соды, их смешивание, прессование и упрочнение, согласно предлагаемому изобретению в качестве порошкообразного компонента связующего используют саморассыпающийся шлак феррохромового производства в количестве 3...25%, а раствор каустической соды перед дозированием нагревают до температур 30...100°С.

Особенность изобретения состоит в том, что в качестве порошкообразного компонента связующего используется саморассыпающийся шлак феррохромового производства (ФШ) в количестве от 3-х до 25%, который при смешивании с горячим раствором каустической соды образует в брикетируемой смеси связующее вещество в виде коллоидных гидросиликатов сложного состава, проявляющее высокие связующие свойства и большую скорость упрочнения брикетов в процессе прессования и последующей воздухе. Эта особенность ФШ связана с его минералогическим и химическим составом.

Саморассыпающийся шлак образуется при производстве феррохрома и является порошкообразным отходом этого производства. В отличие от сверхдисперсного кремнезема, применяемого в известном способе, ФШ имеет гораздо больше насыпную массу (1100-1200 кг/м3 ) и не относится к сильно пылящим материалам. По химическому и минералогическому составу ФШ представляет собой двухкальциевый силикат: Ca2SiO4.

При взаимодействии с нагретым щелочным водным раствором каустической соды Ca 2SiO4 в ФШ активно образует в связующей системе смеси гидросиликаты сложного состава, например тоберморит, ксонотлит, гиллебрандит, которые способствуют быстрому упрочнению брикетов.

При этом активный кремний в дисперсном наполнителе не успевает взаимодействовать с водой и значительно сохраняется по отношению к исходному содержанию. Это связано с тем, что щелочной раствор, являющийся основным средством окисления кремния, при перемешивании и прессовании смеси с ФШ быстро переходит в прочно связанные кристаллизационные структуры гидросиликатов кальция. Проведенный химический анализ и расчет материального баланса показали, что при использовании в качестве связующего компонента смеси ФШ окисление кремния уменьшается в сравнении с прототипом более чем в 4 раза. При этом использование ФШ взамен сверхдисперсного кремнезема значительно улучшает экологические условия труда, так как ФШ при загрузке не выделяет пыли и не требует применения вытяжной вентиляции на пункте загрузки компонентов смеси в смеситель.

Заметное взаимодействие компонентов и упрочнение смеси начинается уже при содержании ФШ от 3%. Однако для некоторых инертных дисперсных наполнителей, например для отходов ферросилиция ФС20, ФС45 или ФС65 эффективное упрочнение брикетированных смесей достигается при его содержании около 25%.

ФШ, являясь отвальным отходом производства, имеет низкую торговую цену (120 руб/т) и при расходе даже около 25% значительно снижает себестоимость брикетов в сравнении с брикетами на сверхдисперсном кремнеземе, имеющем цену 450$ США за 1 тонну. При этом использование ФШ для брикетирования, являющегося отвальным материалом, обеспечивает утилизацию промышленных отходов и улучшает экологию окружающей среды.

Способ осуществляется следующим образом. Сначала готовят горячий раствор каустической соды с температурой в пределах 30-100°С. Смесь готовят в смесителях периодического или непрерывного действия. Сначала в смеситель загружают дисперсный наполнительный материал и смешивают с ФШ, затем в него добавляют горячий раствор каустической соды. После перемешивания смесь подают в пресс и уплотняют брикеты. Уплотненные брикеты после выгрузки из пресса выдерживаются на воздухе в течение 25-50 минут и затем подаются на упаковку. Поэтому не требуется длительная выдержка брикетов на воздухе для их упрочнения.

Испытания по примерам проводили при равных условиях. В качестве дисперсного наполнительного материала использовали циклонную пыль фракции 0,2-0,8 мм, образующуюся при дроблении ферросилиция марки ФС75, ФШ, поставляемый по ТУ 14-11108-95, и 25%-ный раствор каустической соды.

Смеси готовили в смесителе модели А 111. Для брикетирования смесей применили валковый брикетер модели «Спайдермаш» с удельным усилием прессования 50 МПа. Формование брикетов по времени составляло около 3-5 секунд при получении брикетов с размерами 25×45×65 мм.

Пример 1. В качестве дисперсного наполнителя использовали циклонную пыль ферросилиция ФС75 фракции 0,2-0,8 мм. ФШ использовали в количестве 2,5%, раствор каустической соды 25%-ной концентрации в количестве 10%. Температура нагрева щелочного раствора составляла 20°С.

Пример 2. Для изготовления брикетов использовали наполнительный материал - циклонную пыль ферросилиция ФС75 фракции 0,2-0,8 мм.

Количество ФШ составляло 3%. Температура нагрева 25%-ного щелочного раствора доведена до 30°С с дозировкой в количестве 10%.

Пример 3. Наполнительный материал - циклонная пыль ФС 75 фракции 0,2-0,8 мм. Количество ФШ 25%. Температура нагрева 25%-го щелочного раствора 100°С при дозировке 10%.

Пример по прототипу. Наполнительный материал - циклонная пыль ФС 75 фракции 0,2-0,8 мм. Сверхдисперсный кремнезем 25%. Температура 25%-ного щелочного раствора 100°С при дозировке 10%. Результаты испытания представлены в табл.1.

Таблица 4
ПримерыПараметры
Прочность через 0,5 часа, МПа Полное время упрочнения, мин.Потери кремния, %Время растворения брикетов, мин. Пылевыделение, г/м3
Пример 11,3240 3,29 0,23
Пример 2 3,28221,4 50,18
Пример 34,2610 0,630,12
Прототип1,22 1327,855 14,65

Как видно в табл.1, при содержании в смеси ФШ менее 3% прочность брикетов была на уровне прочности брикетов, полученных известным способом. Но потери кремния оказались достаточно высокими (3,2%), хотя они и меньше почти в 2 раза, чем в брикетах, полученных по прототипу. Наилучшие результаты получены при содержании в смеси взамен сверхдисперсного кремнезема феррошлака от 3% и более. Однако применять в смеси феррошлак с содержанием более 25% нецелесообразно, так как с повышением содержания ФШ в готовых брикетах уменьшается общая доля исходного кремния, хотя его окисление существенно сокращается вплоть до 0,6%.

Как видно в табл., замена сверхдисперсного кремнезема на ФШ позволяет значительно повысить качество брикетов: повысить прочность почти в 4 раза, сократить время полного упрочнения почти в 3 раза, сократить потери кремния за счет окисления почти в 13 раз, сократить время растворения брикетов в расплавах почти в 18 раз и уменьшить пылевыделение в окружающую атмосферу почти в 100 раз. Полученные результаты испытания свидетельствую о высокой эффективности изобретения.

Промышленная применимость. Изобретение может быть применено для брикетирования отходов ферросплавов, таких как ферросилиция, силикокалыция, силикохрома, силикобария, ферросиликобария, ферромолибдена, а также дисперсных материалов, образующихся при обогащении и переработке исходных руд для черной и цветной металлургии.

Класс C22B1/243 неорганическими

брикет экструзионный (брэкс) шламовый -  патент 2506327 (10.02.2014)
брикет экструзионный (брэкс) - компонент доменной шихты -  патент 2506326 (10.02.2014)
способ получения брикета экструзионного (брэкса) для выплавки металла -  патент 2506325 (10.02.2014)
брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах -  патент 2504588 (20.01.2014)
брикет экструзионный (брэкс) металлический -  патент 2502812 (27.12.2013)
брикет экструзионный (брэкс) промывочный -  патент 2499061 (20.11.2013)
способ получения брикетов из фторуглеродсодержащих отходов -  патент 2497958 (10.11.2013)
способ получения брикетов из руд и концентратов черных металлов -  патент 2484151 (10.06.2013)
способ получения брикетов, способ получения восстановленного металла и способ отделения цинка или свинца -  патент 2467080 (20.11.2012)
шихта для изготовления окатышей -  патент 2464329 (20.10.2012)

Класс C22B1/248 металлического лома или сплавов

способ брикетирования металлической стружки -  патент 2490340 (20.08.2013)
способ получения топливных брикетов -  патент 2486232 (27.06.2013)
компактированное металлургическое изделие, способ производства компактированного металлургического изделия и применение компактированного металлургического изделия -  патент 2476609 (27.02.2013)
способ получения окатышей для восстановительной плавки -  патент 2459879 (27.08.2012)
способ подготовки замасленной окалины металлургического производства к брикетированию -  патент 2455372 (10.07.2012)
способ разрушения массивного чугунного монолита -  патент 2454306 (27.06.2012)
брикет для выплавки чугуна и стали -  патент 2441925 (10.02.2012)
способ подготовки замасленных и незамасленных шихтовых материалов в виде офлюсованных брикетов к плавке -  патент 2429302 (20.09.2011)
способ повышения насыпной плотности металлолома в загрузочной емкости металлоплавильного агрегата и устройство для его осуществления -  патент 2404268 (20.11.2010)
брикет для промывки доменной печи (варианты) и способ его производства -  патент 2403295 (10.11.2010)
Наверх