способ переработки альфа-активных азотно-кислых растворов, содержащих трехвалентное железо

Классы МПК:G21F9/06 способы обработки
G21F9/20 захоронение жидких радиоактивных отходов 
Автор(ы):,
Патентообладатель(и):ФГУП "Производственное объединение "Маяк" (RU)
Приоритеты:
подача заявки:
2003-04-24
публикация патента:

Изобретение относится к области переработки жидких радиоактивных отходов. Сущность изобретения: способ переработки азотнокислых альфа-активных растворов, содержащих трехвалентное железо, включает предварительное упаривание перерабатываемого раствора с получением регенерированной азотной кислоты и кубового остатка. Затем осуществляют нейтрализацию кубового остатка до рН 1-2 и частичное восстановление трехвалентного железа сульфитом натрия до соотношения между валентными формами Fe3+:Fe2+=2:1. Производят последующую нейтрализацию щелочью до рН 10-11. Полученный осадок магнетита после отстаивания направляется на отверждение. Далее осуществляют декантацию раствора, магнитную сепарацию декантата и его дополнительную очистку. Преимущества изобретения заключаются в снижении объема вторичных отходов и сокращении количества химических реагентов, применяемых в способе. 1 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ переработки азотно-кислых альфа-активных растворов, содержащих трехвалентное железо, включающий предварительную упарку перерабатываемого раствора с получением регенерированной азотной кислоты и кубового остатка, его нейтрализацию до рН 1-2, частичное восстановление трехвалентного железа сульфитом натрия до соотношения между валентными формами Fe3+:Fe2+=2:1, последующую нейтрализацию щелочью до рН 10-11, образование осадка магнетита, который после отстаивания направляется на отверждение, декантацию раствора, магнитную сепарацию декантата и направление декантата на дополнительную очистку.

2. Способ по п.1, отличающийся тем, что дополнительную очистку проводят ионным обменом.

Описание изобретения к патенту

Изобретение относится к области переработки и обезвреживания жидких радиоактивных отходов (ЖРО) среднего уровня активности и может быть использовано преимущественно на радиохимических производствах, где образуются растворы с высоким содержанием железа. В действующем процессе химико-металлургического производства плутония образуются кислые растворы с высоким (1-7 г/л) содержанием железа(III). В настоящее время данные отходы перерабатывают, нейтрализуя раствор щелочью. Выпадающий осадок гидратно-шламовой пульпы отправляют на хранение для последующей переработки. Недостатком данного способа является образование большого количества (до 30% от суммарного объема) гидратно-шламовых пульп, подлежащих дальнейшей локализации.

Известен способ обезвреживания жидких радиоактивных отходов, основанный на осаждении гидроксида железа [Кузнецов Ю.В., Щебетковский В.Н., Трусов А.Г. Основы дезактивации воды, 1968, М., Атомиздат, стр.80-88]. Однако пульпа гидроксида железа имеет относительно большой объем. Осадок смешанного оксида железа (магнетита) имеет кристаллическую структуру и поэтому обладает более высокой плотностью, лучшими седиментационными и фильтрационными свойствами, чем осадок гидроксида железа, что позволяет получить меньший объем вторичных отходов [Радовенчик В.М., Коростятинец В.Д., Иваненко Е.И. Исследование эффективности выделения ионов железа из водных растворов ферритным методом -Химия и технология воды, 2001, т.23, №2, стр.172-176; Кленышева Л.Д., Задорожная А.Б., Бунтури И.Н. Методы интенсификации разделения суспензии гидроксидов железа - Экотехнологии и ресурсосбережение, 1994, №5-6, стр.87-91].

Наиболее близким к предлагаемому является способ очистки альфа-активных ЖРО, заключающийся в формировании осадка магнетита смешиванием растворов двух и трехвалентного железа в соотношении Fe3+:Fe2+=2:1, введением полученного осадка магнетита в перерабатываемый раствор с последующей корректировкой рН обрабатываемого раствора до рН более 9, седиментацией осадка магнетита и декантацией очищенного раствора [Simidzy К. Waste water treatment by ferritization. - Chemical Economy And Engineering Review, 1975, vol.7, №7, p.32-37].

Недостатком данного способа является то, что для очистки кислых растворов химико-металлургического производства потребуется введение значительного количества двухвалентного железа, что приведет к увеличению общего количества отходов и сведет преимущества данного способа к минимуму.

Задачей изобретения является очистка азотнокислых альфа-активных растворов, снижение объема вторичных отходов, подлежащих дальнейшей локализации, сокращение количества щелочи, требующейся для нейтрализации.

Поставленная задача решается способом, включающим упарку перерабатываемого раствора, в результате которой получают регенерированную азотную кислоту, возвращаемую в процесс, и кубовый остаток, в котором локализованы химические и радиоактивные компоненты. Для корректировки рН до 1-2 в кубовый остаток дозируют щелочь, а затем вводят сульфит натрия для восстановления Fe3+ до Fe2+. Восстановитель дозируют в таком количестве, которое позволяет получить соотношение валентных форм Fe 3+:Fe2+=2:1. Полученный раствор нейтрализуется щелочью до рН 10-11. В результате нейтрализации образуется осадок магнетита и происходит очистка раствора от радионуклидов. После отстаивания осадок направляют на отверждение, а раствор декантируют и направляют на дополнительную очистку известными способами, например сорбционными. Поскольку магнетит обладает хорошими магнитными свойствами, предлагается перед дополнительной очисткой использовать магнитную сепарацию для гарантированной очистки декантата от частиц магнетита.

В таблице показаны характеристики осаждения смешанных оксидов железа, приготовленных химическим путем, для различных соотношений между Fe2+ и Fe3+ и для различных значений рН.

Таблица

Изменение объема пульпы в зависимости от соотношения между валентными формами железа и рН раствора
РНСоотношение Fe3+ :Fe2+Объем пульпы, % от исходного объема раствора
101035
104 22
102 13
10 0,6730
10 0,2935
82 30
92 27
10 213
11 216

Отличительной особенностью данного способа от прототипа является частичное восстановление трехвалентного железа, присутствующего в растворе, что дает возможность отказаться от введения солей двухвалентного железа и снизить объем вторичных отходов, подлежащих отверждению, а следовательно, и затрат на последующее хранение (захоронение). Кроме того, за счет регенерации азотной кислоты сокращается количество щелочи, требующейся для нейтрализации раствора.

Пример

Азотнокислый альфа-активный раствор с содержанием [НNO3]=380 г/л, [Fe3+]=4 г/л, общей альфа-активностью ~ 1·108 Бк/л, общей бета-активность ~ 1·107 Бк/л подается на упарку, для того чтобы частично вернуть в производство азотную кислоту и снизить расход щелочи на последующую нейтрализацию.

В результате упарки получаются два раствора: регенерированная азотная кислота, возвращаемая в производство и кубовый остаток, направляемый на дальнейшую переработку.

В кубовый остаток со средним составом [НNО3]=180 г/л, [Fe3+]=6 г/л, альфа-активностью ~ 1,5·108 Бк/л, бета-активностью ~ 1,5·107 Бк/л вводят щелочь для корректировки рН до 1-2 (концентрация свободной кислоты 0,6-6,0 г/л). В полученный раствор вводится раствор сульфита натрия для частичного восстановления трехвалентного железа. Количество восстановителя вводится с расчетом, чтобы соотношение между валентными формами железа соответствовало отношению Fe3+:Fe2+=2:1. Полученный раствор затем нейтрализуется щелочью до рН=10-11. После отстаивания осадка магнетита очищенный раствор со средним составом [НаNO3 ]=250 г/л, альфа-активностью ~ 1·102 Бк/л, бета-активностью ~ 1·02 Бк/л декантируют, подвергают магнитной сепарации для полного удаления частиц магнетита и отправляют на дополнительную очистку совместно с низкоактивными отходами, а пульпу с альфа-активностью ~ 1·109 Бк/л, бета-активностью ~ 1·108 Бк/л отправляют на отверждение известными методами, например цементированием.

Таким образом, предлагаемый способ позволяет получить регенерированную азотную кислоту, возвращаемую в производство, сократить количество щелочи, требующейся для нейтрализации перерабатываемого раствора, и снизить объем вторичных отходов в виде пульпы, подлежащей дальнейшей локализации.

Класс G21F9/06 способы обработки

способ обработки радиактивного раствора -  патент 2514823 (10.05.2014)
экстракционная смесь для выделения актинидов из жидких радиоактивных отходов -  патент 2499308 (20.11.2013)
способ обработки структуры, содержащей натрий и радиоактивное вещество -  патент 2492535 (10.09.2013)
способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов -  патент 2473145 (20.01.2013)
способ определения суммарной объемной активности радиоактивно-загрязненных пресных вод -  патент 2461901 (20.09.2012)
способ выведения нептуния при фракционировании долгоживущих радионуклидов -  патент 2454740 (27.06.2012)
способ переработки мало- и среднеминерализованных низкоактивных жидких радиоактивных отходов в полевых условиях -  патент 2439725 (10.01.2012)
способ очистки воздуха от радиоактивных веществ -  патент 2422927 (27.06.2011)
способ очистки и дезактивации оборудования атомных электрических станций (варианты) -  патент 2397558 (20.08.2010)
способ дезактивации оборудования -  патент 2387033 (20.04.2010)

Класс G21F9/20 захоронение жидких радиоактивных отходов 

способ захоронения токсичных и радиоактивных отходов -  патент 2515578 (10.05.2014)
способ фиксации пульпы в открытом бассейне-хранилище радиоактивных отходов -  патент 2510858 (10.04.2014)
способ отверждения отработанных радиоактивных масел в полимерную матрицу -  патент 2443029 (20.02.2012)
способ цементирования отработанных радиоактивных масел -  патент 2437178 (20.12.2011)
способ защиты природных вод от радиоактивных и токсичных веществ из хранилищ жидких отходов -  патент 2316068 (27.01.2008)
способ переработки жидких радиоактивных отходов низкого уровня активности -  патент 2313147 (20.12.2007)
способ иммобилизации жидких радиоактивных отходов, содержащих воду и нефтепродукты -  патент 2312415 (10.12.2007)
способ очистки сточных вод от радиоактивных компонентов и масла -  патент 2305335 (27.08.2007)
способ переработки кубового остатка жидких радиоактивных отходов -  патент 2297055 (10.04.2007)
способ отверждения жидких радиоактивных отходов -  патент 2291504 (10.01.2007)
Наверх