способ очистки радиоактивных нефтешламов

Классы МПК:G21F9/06 способы обработки
G21F9/20 захоронение жидких радиоактивных отходов 
Автор(ы):, ,
Патентообладатель(и):Общество с ограниченной ответственностью "Севергазпром" (RU)
Приоритеты:
подача заявки:
2003-06-04
публикация патента:

Изобретение относится к области обработки жидких гетерогенных радиоактивных отходов. Сущность изобретения: способ очистки радиоактивных нефтешламов заключается в выщелачивании из них радия с помощью горячей воды, кислых или щелочных растворов. При этом радиоактивные нефтешламы предварительно подвергают восстановительному отжигу при недостатке кислорода в атмосфере неполного сгорания углерода и углеводородов, для получения которых используют нефтепродукты. Температуру восстановительного отжига выдерживают в диапазоне 700-900°С от 1 до 3 часов. Отожженный нефтешлам обрабатывают горячим паром и повторно подвергают его обработке горячим паром с соляной кислотой при концентрации соляной кислоты от 5 до 10% по отношению к массе выщелачивающего раствора. Преимущества изобретения заключаются в обеспечении качественной обработки радиоактивных отходов. 3 з.п. ф-лы, 1 табл., 1 ил.

способ очистки радиоактивных нефтешламов, патент № 2251167

способ очистки радиоактивных нефтешламов, патент № 2251167

Формула изобретения

1. Способ очистки радиоактивных нефтешламов, заключающийся в выщелачивании из них радия с помощью горячей воды, кислых или щелочных растворов, отличающийся тем, что радиоактивные нефтешламы предварительно подвергают восстановительному отжигу при недостатке кислорода в атмосфере неполного сгорания углерода и углеводородов, для получения которых используют нефтепродукты, при этом температуру восстановительного отжига выдерживают в диапазоне 700-900°С 1-3 ч, а отожженный нефтешлам обрабатывают горячим паром и повторно подвергают его обработке горячим паром с соляной кислотой при концентрации соляной кислоты 5-10% по отношению к массе выщелачивающего раствора.

2. Способ по п.1, отличающийся тем, что в смесь, подвергаемую восстановительному отжигу, добавляют хлорид кальция в соотношении 1:10-1:20 по отношению к массе отжигаемого нефтешлама.

3. Способ по п.1, отличающийся тем, что в выщелачивающий водный и соляно-кислый раствор добавляют хлорид кальция в соотношении 1:5-1:20 по отношению к массе выщелачивающего раствора.

4. Способ по п.1, отличающийся тем, что количество углерода добавляют, исходя из соотношения массы радиоактивного нефтешлама и углерода 1:3-1:5.

Описание изобретения к патенту

Изобретение относится к области переработки жидких радиоактивных отходов, в частности, к способам очистки радиоактивных нефтешламов пластовых вод и солей месторождений углеводородов.

Известен способ переработки жидких радиоактивных отходов, охарактеризованный в патенте РФ №2112289, кл. G 21 F 9/04, В 01 J 20/02, опубл. 27.05.1998. В этом источнике изложен способ постадийной переработки жидких радиоактивных отходов, содержащих радионуклиды цезия и стронция. Первоначально жидкие радиоактивные отходы подают на стадию предочистки, затем их пропускают через селективный неорганический сорбент на основе ферроцианидов переходных металлов и пропускают через обратноосмотический модуль. Доочистку осуществляют на сорбенте. Недостатком известного способа является невозможность его использования для гетерогенных радиоактивных отходов.

Наиболее близким источником информации к заявленному изобретению по совокупности существенных признаков является способ очистки шлама от нефтяного и радиоактивного загрязнения, изложенный в патенте РФ №2065776, кл. В 03 В 9/02, Е 21 В 21/06, опубл. 27.08.1996 (прототип).

В прототипе осуществляют выщелачивание радия из шламов с помощью горячих растворов. Шлам обрабатывают неполярным органическим растворителем, затем растворитель отделяют, а шлам последовательно обрабатывают 20%-ным водным раствором кальцинированной соды и 10%-ным водным раствором хлористого аммония. Обработку шлама вышеуказанными растворами осуществляют при температуре кипения в течение 2-4 часов в каждом растворе.

Известный способ обладает следующими недостатками. Радий, содержащийся в радиоактивных нефтешламах в виде радиобарита, практически не выщелачивается горячими растворами кислот и щелочей. Процесс очистки очень длительный и несет в себе опасность для окружающей среды.

Задачей заявленного изобретения является создание способа очистки радиоактивных нефтешламов естественного или искусственного происхождения.

Технический результат заключается в снижении уровня средней удельной активности, уменьшении массы отходов при очистке, а также получение конечного продукта, пригодного для безопасного хранения и использования.

Технический результат достигается тем, что способ очистки радиоактивных нефтешламов заключается в выщелачивании из них радия с помощью горячей воды, кислых или щелочных растворов. При этом радиоактивные нефтешламы предварительно подвергают восстановительному отжигу при недостатке кислорода в атмосфере неполного сгорания углерода и углеводородов, для получения которых используют нефтепродукты. Температуру восстановительного отжига выдерживают в диапазоне 700-900°С от 1 до 3 часов. Отожженный нефтешлам обрабатывают горячим паром и повторно подвергают его обработке горячим паром с соляной кислотой при концентрации соляной кислоты от 5 до 10% по отношению к массе выщелачивающего раствора.

Кроме того, в смесь, подвергаемую восстановительному отжигу, добавляют хлорид кальция в соотношении 1:10-1:20 по отношению к массе отжигаемого нефтешлама.

В выщелачивающий водный и солянокислый раствор может быть добавлен хлорид кальция в соотношении 1:5-1:20 по отношению к массе выщелачивающего раствора.

Количество углерода добавляется исходя из соотношения массы радиоактивного нефтешлама и углерода 1:3-1:5.

Способ очистки радиоактивных нефтешламов поясняется с помощью технологической схемы.

Для проведения процесса очистки нефтешламов осуществляют следующие операции:

1. Определяют суммарное количество углеводородов в нефтешламе.

2. Нефтешлам помещают во вращающееся устройство для высокотемпературной обработки.

3. В устройство для высокотемпературной обработки нефтешлама засыпают парафин по массе, составляющей величину, равную разности между 15-25% от массы нефтешлама и процентным содержанием углеводородов в нефтешламе.

4. В устройство для высокотемпературной обработки нефтешлама засыпают хлорид кальция или заливают его раствор.

5. Смесь подвергают нагреву до 700-900°С при недостаточном доступе воздуха.

6. Время нагревания составляет не менее 1 часа и не превышает 3 часов.

7. Обрабатывают нефтешлам перегретым паром с хлоридом кальция. При этом количество раствора, образовавшегося при конденсации пара, должно превышать массу нефтешлама в 3-10 раз.

8. Радиоактивный раствор сливают, а нерастворившийся радиоактивный осадок обрабатывают горячим паром и раствором соляной кислоты. При этом концентрация кислоты в образовавшемся растворе должна составлять не менее 5% и не превышать 10%.

9. Для повышения эффективности выщелачивания в нефтешлам добавляют хлорид кальция.

При выполнении вышеуказанной последовательности действий происходит следующее.

При нагревании нефтешлама выше 100°С парафин или другой углеводород расплавляется и пропитывает нефтешлам. Жидкий раствор хлорида кальция также пропитывает нефтешлам. При дальнейшем нагревании нефтешлама парафин возгоняется и разлагается на водород и угарный газ. После образования указанных восстановителей происходит разложение некоторых минералов и солей нефтешлама в соответствии со следующими реакциями:

1. (Ва, Ra)SО4+4СО=(Ва, Ra)S+4СО2 (600-800°С)

2. (Ва, Ra)SО4+4Н2=(Ва, Ra)S+4H 2O (900-1000°С)

3. (Ва, Ra)SО4+2С+СаСl 2=(Ва, Ra)Cl2+CaS+2С02

4. (Ва, Ra)SО4+CaCl2=(Ва, Ra)Cl2 +CaSО4

Радиобарит (Ва, Ra)SО4 при восстановлении продуктами распада парафина и других углеводородов превращается в растворимые в горячей воде и растворах соляной кислоты соединения (Ra, Ba)O и (Ra, Ba)S, которые, в свою очередь, реагируют с хлористым кальцием и частично превращаются в легкорастворимый в горячей воде хлористый барий.

Радиокальцит (Ra, Ва)СО 3 при восстановлении продуктами распада парафина и других углеводородов превращается в растворимый в горячей воде и растворах соляной кислоты оксид кальция (Ra, Ва)O.

Вышеприведенные реакции протекают начиная с температуры 500°С.

При температуре выше 800°С парафин и нефть быстро выгорают, и начинается реакция ревосстановления минералов. Поэтому температура и время реакции ограничены следующими параметрами.

Таблица 1
Температура отжига, °С 500600 700800900 1000
Время отжига, час >65-64-5 321

При температуре выше 500°С наблюдается эффект перестройки кристаллической структуры минералов, в нарушениях которой может содержаться радий. При повышении температуры радий вытесняется, и нарушения в кристаллической структуре исчезают. В процессе высокотемпературной обработки масса нефтешлама уменьшается из-за выделения углекислого и других газов. Большая часть радия переходит в растворимую в горячей воде форму, поэтому следующей операцией является обработка нефтешлама перегретым паром. Для повышения эффективности выщелачивания в выщелачивающий раствор добавляют CaCl2 в соотношении, обеспечивающем его концентрацию в растворе 50-100 г/л. В среднем около 60-70% радия переходит в раствор. При этом масса нефтешлама уменьшается в два и более раз. Оставшуюся часть нефтешлама подвергают обработке горячим раствором соляной кислоты с концентрацией не менее 5% и не более 10% и хлоридом кальция в соотношении, обеспечивающем его концентрацию в растворе 50-100 г/л. После обработки около 90% радия от первоначального количества переходит в раствор. Нефтешлам промывают раствором соды до достижения нейтральной или слабощелочной реакции для подготовки к дальнейшей переработке.

Пример. Очистке подвергают 100 тонн радиоактивных нефтешламов со средней удельной активностью 12 кБк/кг. Содержание нефтепродуктов в нефтешламе в среднем составляет 10-15%.

В нефтешлам добавляют парафин в количестве 10-15% по массе и жидкий 20% раствор хлорида кальция в соотношении 10-20% от массы нефтешлама. Смесь подвергают высокотемпературной обработке во вращающейся газовой печи при температуре около 800°С в течение 3 часов. При этом масса нефтешлама уменьшается в среднем в 3-5 раз. После остывания до 100°С нефтешлам подвергают обработке горячим паром совместно с хлоридом кальция в течение 3 часов. При этом 70% радия переходит в раствор, удельная активность нефтешлама уменьшается в 1,5 раза, а масса уменьшается в среднем в 1,5 раза. После слива радиоактивного раствора оставшаяся часть нефтешлама подвергается обработке горячим паром в течение 3 часов с добавлением в образовавшийся раствор соляной кислоты с концентрацией 10% и хлорида кальция с концентрацией 100 г/л.

После проведенной обработки в среднем 90% от первоначального количества радия перейдет в раствор, а масса нефтешлама уменьшается еще в 1,5 раза. Радиоактивный раствор сливается, а оставшаяся часть нефтешлама с удельной активностью около 10% от первоначальной и массой около 12% от первоначальной направлена на разубоживание и захоронение.

Таким образом, при осуществлении способа происходит уменьшение массы нефтешламов, а средняя удельная активность (12 кБк/кг) уменьшается в 10 раз и составляет 1,2 кБк/кг.

Класс G21F9/06 способы обработки

способ обработки радиактивного раствора -  патент 2514823 (10.05.2014)
экстракционная смесь для выделения актинидов из жидких радиоактивных отходов -  патент 2499308 (20.11.2013)
способ обработки структуры, содержащей натрий и радиоактивное вещество -  патент 2492535 (10.09.2013)
способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов -  патент 2473145 (20.01.2013)
способ определения суммарной объемной активности радиоактивно-загрязненных пресных вод -  патент 2461901 (20.09.2012)
способ выведения нептуния при фракционировании долгоживущих радионуклидов -  патент 2454740 (27.06.2012)
способ переработки мало- и среднеминерализованных низкоактивных жидких радиоактивных отходов в полевых условиях -  патент 2439725 (10.01.2012)
способ очистки воздуха от радиоактивных веществ -  патент 2422927 (27.06.2011)
способ очистки и дезактивации оборудования атомных электрических станций (варианты) -  патент 2397558 (20.08.2010)
способ дезактивации оборудования -  патент 2387033 (20.04.2010)

Класс G21F9/20 захоронение жидких радиоактивных отходов 

способ захоронения токсичных и радиоактивных отходов -  патент 2515578 (10.05.2014)
способ фиксации пульпы в открытом бассейне-хранилище радиоактивных отходов -  патент 2510858 (10.04.2014)
способ отверждения отработанных радиоактивных масел в полимерную матрицу -  патент 2443029 (20.02.2012)
способ цементирования отработанных радиоактивных масел -  патент 2437178 (20.12.2011)
способ защиты природных вод от радиоактивных и токсичных веществ из хранилищ жидких отходов -  патент 2316068 (27.01.2008)
способ переработки жидких радиоактивных отходов низкого уровня активности -  патент 2313147 (20.12.2007)
способ иммобилизации жидких радиоактивных отходов, содержащих воду и нефтепродукты -  патент 2312415 (10.12.2007)
способ очистки сточных вод от радиоактивных компонентов и масла -  патент 2305335 (27.08.2007)
способ переработки кубового остатка жидких радиоактивных отходов -  патент 2297055 (10.04.2007)
способ отверждения жидких радиоактивных отходов -  патент 2291504 (10.01.2007)
Наверх