способ определения точного времени появления небесного явления

Классы МПК:B64G1/22 основные составные части летательного аппарата и оборудование, устанавливаемое на нем или внутри него
G01C21/02 с помощью астрономических средств
G08C21/00 Системы для передачи положения объекта относительно предварительно выбранной базовой системы, например системы передачи факсимильного изображения
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" (RU)
Приоритеты:
подача заявки:
2003-03-13
публикация патента:

Изобретение относится к космической технике и, в частности, к методам и средствам обеспечения привязки времени регистрации наблюдаемых явлений на борту космического аппарата (КА) к местному времени на Земле. Предлагаемый способ включает регистрацию небесного явления на борту КА, определение момента регистрации в бортовом времени и передачу информации по телеметрическому тракту на наземный измерительный пункт. В этом пункте фиксируют по эталонному сигналу системы единого времени местное время в момент пуска КА. В пункте обработки информации рассчитывают с помощью ЭВМ время задержки прохождения сигнала от КА до наземного измерительного пункта в момент регистрации небесного явления. Причем перед пуском КА определяют время задержки прохождения телеметрического сигнала от наземного измерительного пункта до пункта обработки телеметрической информации и время задержки прохождения эталонного сигнала системы единого времени от пункта хранения эталонного времени до указанного пункта обработки информации. При проведении каждого сеанса передачи телеметрических данных с орбиты обрабатывают их на ЭВМ, определяя суммарную величину задержки сигнала, складывающуюся из указанных времен задержки прохождения сигнала и его аппаратурной задержки. Исходя из этих данных подсчитывают общий уход бортового времени с момента пуска КА до регистрации небесного явления, после чего определяют точное местное время появления небесного явления. Технический результат изобретения состоит в повышении точности определения времени появления небесного явления.

Формула изобретения

Способ определения точного времени появления небесного явления, включающий регистрацию небесного явления научной аппаратурой космического аппарата (КА), определение момента регистрации небесного явления в бортовом времени, задаваемом программно-временным устройством КА, передачу полученной информации во время сеанса связи посредством телеметрической системы КА на наземный измерительный пункт, где фиксируют по эталонному сигналу системы единого времени местное время в момент пуска КА, рассчитывают с помощью электронно-вычислительной машины (ЭВМ) в пункте обработки информации, исходя из баллистических данных, время задержки прохождения телеметрического сигнала от КА до наземного измерительного пункта в момент регистрации небесного явления и с учетом этой задержки определяют время появления небесного явления по местному времени, отличающийся тем, что перед пуском КА определяют время задержки прохождения телеметрического сигнала от наземного измерительного пункта до пункта обработки телеметрической информации и время задержки прохождения эталонного сигнала системы единого времени от пункта хранения эталонного времени до указанного пункта обработки информации, затем после пуска КА фиксируют бортовое время при проведении каждого сеанса передачи телеметрической информации, обрабатывают с помощью ЭВМ полученную информацию в пункте обработки телеметрической информации, определяя для каждого момента съема телеметрической информации суммарную величину задержки сигнала, складывающуюся из указанных времен задержки прохождения сигнала и его аппаратурной задержки, и определяют общий уход бортового времени с момента пуска КА до регистрации небесного явления, после чего определяют точное время появления небесного явления по местному времени Мня из следующего выражения:

Мня=Jn-KGn,

где Gn - бортовое время на КА в момент появления небесного явления;

К - коэффициент ухода бортового времени за 1 с, рассчитываемый с учетом указанных суммарной величины задержки сигнала и общего ухода бортового времени;

J n - суточная метка n-х суток, в которых было зарегистрировано появление небесного явления со дня запуска КА, причем по данной метке производят обнуление бортового времени с точностью до 1 мс.

Описание изобретения к патенту

Изобретение относится к космической технике, в частности к космическим аппаратам дальнего и ближнего космоса, используемых для изучения гамма-всплесков, рентгеновского излучения и вновь возникающих небесных явлений с привязкой времени их появления к московскому времени или времени любого другого государства, т.е. к местному времени.

Известен способ регистрации события и передачи телеметрической информации (ТМИ) о нем на Землю в бортовом (реальном) времени (см. П.И.Бакулин, B.C.Блинов. Служба точного времени. - М.: Наука, 1977, стр.98, 126).

В приведенном способе телеметрическая информация передается кадрами. Осуществляется временная привязка каждого кадра ко времени СЕВ (системы единого времени). В кадре есть слова, несущие информацию о бортовом времени. Четыре младших разряда одного из слов могут принимать значения от 0 до 15 (0…937,5 мсек) с дискретностью 62,5 миллисекунды, что не позволяет с достаточной точностью определять время появления небесного явления.

Известен способ регистрации события и передачи телеметрической информации о нем на Землю в бортовом времени (см. Радиосистемы межпланетных космических аппаратов./Под редакцией А.С.Виницкого. - М.: "Радио и связь", 1993, стр.75-77), выбранный за прототип.

Известный способ заключается в регистрации небесного явления научной аппаратурой, установленной на космическом аппарате, и передачи телеметрической информации (ТМИ) об этом небесном явлении на наземный измерительный пункт в бортовом времени, задаваемом программно-временным устройством космического аппарата (КА).

Известный способ не обеспечивает достаточной точности определения времени появления зарегистрированных небесных явлений.

Технической задачей, решаемой предлагаемым изобретением, является повышение точности определения времени появления небесного явления.

Поставленная задача решается за счет того, что в предлагаемом способе, включающем регистрацию небесного явления научной аппаратурой космического аппарата, определение момента регистрации небесного явления в бортовом времени, задаваемом программно-временным устройством космического аппарата, передачу полученной информации во время сеанса связи посредством телеметрической системы на наземный измерительный пункт, где фиксируют по эталонному сигналу СЕВ местное время в момент пуска космического аппарата, рассчитывают с помощью ЭВМ в пункте обработки информации исходя из баллистических данных время задержки прохождения сигнала по телеметрическому тракту от космического аппарата до наземного измерительного пункта в момент регистрации небесного явления и с учетом этой задержки определяют время появления небесного явления в местном времени, новым является то, что перед пуском космического аппарата определяют время задержки прохождения телеметрического сигнала от наземного измерительного пункта до пункта обработки телеметрической информации и время задержки прохождения эталонного сигнала единого времени до пункта обработки телеметрической информации, затем после пуска космического аппарата фиксируют бортовое время при проведении каждого сеанса передачи телеметрической информации, обрабатывают с помощью ЭВМ полученную информацию в пункте обработки телеметрической информации для определения суммарной величины задержки сигнала для каждого момента съема телеметрической информации и определяют общий уход бортового времени с момента пуска космического аппарата до регистрации небесного явления, после чего определяют точное время появления небесного явления в местном времени Мня из следующего выражения:

Мня=Jn-К Gn,

где Мня - местное время появления небесного явления,

Gn - бортовое время на КА в момент появления небесного явления,

К - коэффициент ухода бортового времени за 1 сек,

Jn - суточная метка n-х суток (суток, в которых было зарегистрировано появление небесного явления) со дня запуска КА.

Jn можно определить из следующего соотношения:

Jn=Jc-n Кс,

где Кс=К 86400 (сек) - коэффициент ухода бортового времени за одни сутки полета,

n - количество суток, прошедших с момента пуска космического аппарата до регистрации небесного явления,

Jc=J+КG - расчетная суточная метка на сутки приема ТМИ, по которой происходит обнуление параметров бортовых часов, минут, секунд, миллисекунд и выдача очередных бортовых суток в местном времени,

J=(М+24)-G, (при М<G) - общая формула ухода бортового времени относительно местного для каждой точки приема ТМИ,

М=Мосумм ,

Мо - местное время приема ТМИ для одной точки (параметры "Бортовое время" X1-Х8 в двоичных единицах),

Тсумм=Tconstнип тмапп,

где Tconst - постоянная величина задержки сигнала точного времени (эталона времени СЕВ) в наземном тракте,

Тнип - величина задержки прохождения сигнала от КА до наземного измерительного пункта,

Ттм - величина задержки прохождения сигнала от наземного измерительного пункта до пункта обработки телеметрической информации,

Тапп - величина аппаратурной задержки сигнала,

К=(Jm-J)/(G-G m+m 86400),

где Gm - бортовое время на КА в выбранном для расчета ранее проведенном m суток назад сеансе приема ТМИ,

Jm - суточная метка, по которой происходит обнуление параметров бортового времени с точностью до 1 миллисекунды.

Определение величины задержки сигнала в наземном тракте передачи телеметрической информации и тракте передачи эталонного сигнала СЕВ и последующий ее учет при обработке полученной информации на Земле, а также уточнение баллистического прогноза в сеансе съема временной информации и телеметрии позволяет повысить точность определения времени появления небесного явления до 1-2 миллисекунды.

Местоположение небесного явления и дальности до него можно определить по методу разновременности регистрации сигнала от него.

По этому методу определение (реального) бортового времени появления зарегистрированных гамма-всплесков позволяет определить величину временного интервала, разделяющего приход всплеска на один и другой КА. По величине этой задержки оценивается направление прихода излучения. Этот общепринятый, так называемый триангуляционный метод определения дальности, при наблюдении гамма-всплесков с двух космических аппаратов не дает полной информации о положении источника на небесной сфере.

Наибольшая точность достигается при одновременной регистрации на 4-х кораблях, находящихся в полете, например как это было при регистрации гамма-всплесков на Венере-11, Венере-12, Прогнозе-7 и Прогнозе-8 (см. журнал "Природа", 1979, N10, стр.32-33).

Местоположение источников события на небе и дальность до них можно оценивать с помощью метода измерения времени запаздывания прихода излучения Y-всплесков и рентгеновского излучения только на один КА при использовании аппаратуры для их регистрации.

По точности последний метод значительно уступает триангуляционным измерениям, кроме того, он требует полной стабилизации космического аппарата в пространстве. Однако автономность этого метода позволяет оперативно решить такой важный вопрос, как получение статистической картины распределения источников по небесной сфере. Очевидны преимущества сочетания в одном эксперименте обоих методов определения координат и дальности источников.

Предлагаемый способ повышения точности определения времени появления небесного явления и указанные выше методы определения координат источников и дальности до них могут быть осуществлены на спутнике типа "Гранат", с использованием аппаратуры для регистрации Y-всплесков и рентгеновского излучения, сделанной в России, Франции, Германии, Японии и установленной на этом КА.

Сущность предлагаемого способа состоит в следующем.

Для определения точного местного (в нашем случае московского) времени необходимо оценить точность передачи эталонного сигнала времени по наземному тракту от пункта хранения эталонного времени (г. Менделеев, МО) до пункта обработки телеметрической информации. Для этого заранее перед пуском КА определяют постоянную величину задержки сигнала Tconst путем замеров величины задержки на каждом наземном пункте ретрансляции сигнала точного времени и последующего суммирования этих величин.

Также заранее на Земле исходя из баллистических данных рассчитывается траектория полета КА, позволяющая знать дальность до КА в каждой точке траектории, а следовательно, и время задержки прохождения сигнала от КА до наземного измерительного пункта Тнип.

Для уточнения расстояния до КА во время полета примерно за 5 минут до начала сеанса передачи ТМИ на Землю и через 5 минут после фиксируют бортовое время каждые сутки полета в каждом сеансе передачи ТМИ и производят баллистический замер расстояния до КА. По уточненному расстоянию корректируют время задержки прохождения сигнала по телеметрическому тракту от КА до наземного измерительного пункта Тнип в момент регистрации небесного явления, входящее в суммарную величину задержки сигнала Тсумм.

В суммарную величину задержки сигнала для каждого момента съема телеметрической информации входит также аппаратурная задержка Тапп, которая определяется скоростью передачи телеметрического сигнала и составляет при скорости 3072 бит/с 0,0232с, а при 128 бит/с 0,127с.

Точность программно-временного устройства достигается благодаря использованию термостатированного кварцевого генератора частот (тип ЕА 002 Б). С кварцевого генератора сигналы передаются на локальные коммутаторы телеметрии, где их частота преобразуется в двоичный код для расчета бортового времени. Для каждого кварцевого генератора существует своя присущая ему задержка, определяемая экспериментально, и также входящая в аппаратурную задержку Тапп.

На Земле с помощью ЭВМ в пункте обработки телеметрической информации фиксируют бортовое время при проведении каждого сеанса передачи ТМ информации, обрабатывают полученную информацию для определения суммарной величины задержки сигнала Тсумм, которая складывается из постоянной величины задержки сигнала точного времени (эталона времени) в наземном тракте Tconst для заданной скорости передачи ТМ информации, скорректированной с учетом данных о дальности КА относительно наземного измерительного пункта в каждый момент съема ТМ информации, величины задержки прохождения сигнала от КА до наземного измерительного пункта Тнип и от наземного измерительного пункта до пункта обработки телеметрической информации Ттм и величины аппаратурной задержки сигнала Т апп, исходя из чего определяют общий уход бортового времени с момента пуска КА до регистрации небесного явления, равный суммарной величине задержки сигнала Тсумм.

При проведении каждого телеметрического сеанса расчетным путем осуществляется привязка бортового времени к местному времени. В нашем случае, поскольку способ опробован на отечественных КА, привязка осуществляется к московскому времени. Любое событие на небесной сфере, зафиксированное с помощью устройства для регистрации Y-всплесков и рентгеновского излучения, привязывается к московскому времени с помощью программно-временного устройства, установленного на космическом аппарате, и пересчитывается на расстояние до места на небесной сфере.

Программно-временное устройство, находящееся на КА, позволяет в течение всего полета по заказу различных наземных служб выводить телеметрическую информацию миллисекунд (ms), секунд (s), минут (m), часов (h) и суток.

В программу расчета привязки бортового времени к московскому вводится время начала телеметрической регистрации Т1 и время окончания Т2, а в локальные коммутаторы телеметрии - бортовое время в двоичных единицах для расчета:

Х8 - суток

Х7 - часов

Х6 - дес. минут

Х5 - един. минут

Х4 - дес. секунд

Х3 - един.секунд

Х2 - дес. миллисекунд

X1 - един. миллисекунд.

По получении двоичных значений временных сигналов вводятся в программу местное (московское время) и бортовое время для привязки последующих сигналов.

Имея данные по телеметрической информации (параметры "Бортовое время") в двоичных единицах: Х8-X1, можно с точностью до 1 миллисекунды определить местное время появления небесного явления Мня с учетом всех задержек распространения сигнала и нестабильности хода бортового времени (задающего генератора) в интересующие сутки полета КА (n-е сутки появления небесного явления) из следующего выражения:

способ определения точного времени появления небесного явления, патент № 2240265

Для этого для каждого сеанса связи задается 5-минутный интервал приема телеметрических параметров (информации о "Бортовом времени"):

Т1 - время начала приема телеметрической информации;

D1 - дальность до КА на начало приема телеметрической информации;

Т2 - время окончания приема телеметрической информации;

D2 - дальность до КА на окончание приема телеметрической информации.

Из 5-минутного интервала телеметрической информации (выбранных для расчета m суток полета) выбирается одна точка (бортовые параметры X1-Х8) для расчета суточной метки Jc - точки местного времени, определяемой относительно бортового времени с точностью до 1 мсек, по которой происходят обнуление бортовых часов, минут, секунд, миллисекунд и выдача очередных бортовых суток на КА.

Мо - время приема телеметрической информации для одной точки (параметров X1-Х8) в заданном 5-минутном интервале;

Do - дальность до КА на время М о.

Зная Тсумм - суммарную величину задержки прохождения сигнала, определяем М=Мосумм - местное время приема телеметрической информации с учетом задержек,

J=(М+24)-G, при М<G - текущая суточная метка для текущего бортового времени G относительно местного времени.

Взяв значения Gm (бортовое время на КА в выбранном для расчета ранее проведенном - m суток назад - сеансе приема ТМИ) и Jm (суточная метка бортового времени Gm относительно местного времени с точностью до 1 миллисекунды), можно рассчитать коэффициент ухода бортового времени за 1 секунду К и коэффициент ухода бортового времени за одни сутки полета Кс из следующих выражений:

способ определения точного времени появления небесного явления, патент № 2240265

Кс=К 86400.

Просчитывается порядка 15-20 точек в заданном 5-минутном интервале ТМИ и для дальнейших расчетов выбирается совпадающее для каждой точки значение коэффициента К.

Рассчитываем для данной точки (по параметрам X1-Х8) в день приема телеметрической информации предварительную суточную метку J=(М+24час)-G, К - уход бортового времени за 1 секунду и далее определяем СУТОЧНУЮ метку Jn на момент (n-е сутки) приема ТМИ:

Jc=J+K· G.

Определяем прогноз суточных меток на последующие дни полета:

способ определения точного времени появления небесного явления, патент № 2240265

где n - количество суток, прошедших с момента пуска космического аппарата до регистрации небесного явления.

Таким образом, имея телеметрическую информацию о бортовом времени, величине задержек сигнала и расчитывая время выхода суточной метки (J c) на время приема ТМ-информации (т.е. прогнозируя выход суточной метки на n дней вперед), определяем местное время регистрации небесного явления:

Мня=Jn-Gn · К.

Зная бортовые сутки полета, бортовое время - G, J - величину суточной метки на бортовое время G, число, месяц, год проведения сеанса и занеся эти данные в каталог как узлы, где можно использовать их в дальнейшем для работы в течение всего времени полета КА, в любой момент времени путем пересчета по формулам (1) и (2) определяют с высокой точностью местное время появления небесного явления Мня.

Данный способ привязки бортового времени к московскому времени с точностью до 1 миллисекунды может служить маяком бортового времени для планеты Марс.

Наземный измерительный пункт (НИП) принимает сигнал, приходящий с КА на приемную антенну. Далее сигнал от приемной антенны поступает на систему обработки и расшифровки принятого сигнала (сигнал для расшифровки информации должен поступать на пункт обработки информации в другой город по кабельной сети с учетом аппаратурной задержки в этой сети).

В НИП для временной привязки поступающих с КА параметров (в данном случае бортовое время X1-Х8) заводится время СЕВ с точностью до 0,1 миллисекунды. В лабораторных условиях определяется уход кварца задающего генератора в программно-временном устройстве и данный уход кварца (бортового времени) подтверждается в летных условиях.

Приборы научной аппаратуры по телеметрической информации на локальных коммутаторах фиксируют появление небесного явления (гамма-всплески, рентгеновские источники и т.д). Так, благодаря точной привязки бортового времени к местному времени (до 1 мсек) удалось зафиксировать гамма-всплески, источником которых является необычный вспыхивающий рентгеновский пульсар в Созвездии Золотой рыбы.

В 1979-1980 гг. советские ученые опубликовали каталог источников гамма-всплесков, зарегистрированных в эксперименте “Конус“, проведенном на АМС “Венера 11” и “Венера 12“. В каталоге содержатся данные о 143 всплесках в диапазоне энергий 30 КэВ-2 МэВ (см. Физика космоса. Маленькая энциклопедия, стр.206-209, 776, главный редактор Р.И.Сюняев. “Советская энциклопедия”, М., 1986 г.).

Только совпадающие по времени импульсы (всплески гравитационных излучений), полученные с разных космических аппаратов, должны приниматься в расчет.

На КА типа "Гранат" могут быть установлены в качестве аппаратуры для регистрации небесных явлений прибор "Снег-3" (Франция) и аппаратура "Конус", разработанная в С.-П. Физико-техническом институте им. А.Ф.Иоффе.

В аппаратуре "Конус" используется система из шести одинаковых детекторов гамма-излучения. Чувствительность каждого детектора определенным образом зависит от угла падения излучения на его поверхность, а их оси направлены по положительным и отрицательным направлениям осей декартовой системы координат.

Информация, которая может быть получена приборами "Снег-3" и "Конус" (моменты Y-всплесков), а также приборами рентгеновского излучения, переданная телеметрической информацией, позволит совместить события для уточнения достоверности явления.

Точность определения времени появления небесного явления на небесной сфере по предложенному способу повышается до 1-2 ms.

Класс B64G1/22 основные составные части летательного аппарата и оборудование, устанавливаемое на нем или внутри него

использование полимеризуемых смол, характеризующихся низким газовыделением в вакууме, для изготовления композитных материалов, предназначенных для использования в космосе -  патент 2526973 (27.08.2014)
способ компоновки космического аппарата -  патент 2525355 (10.08.2014)
бортовая электролизная установка космического аппарата -  патент 2525350 (10.08.2014)
космический измеритель приращения скорости -  патент 2524687 (10.08.2014)
планер летательного аппарата -  патент 2521936 (10.07.2014)
переходной отсек сборочно-защитного блока ракеты космического назначения -  патент 2521078 (27.06.2014)
одноступенчатая ракета-носитель -  патент 2518499 (10.06.2014)
устройство кормовой части корпуса космического летательного аппарата -  патент 2516923 (20.05.2014)
устройство защиты пневмогидравлического соединения стыкуемых объектов и способ его контроля на герметичность -  патент 2515699 (20.05.2014)
узел крышки светозащитного устройства космического аппарата -  патент 2514015 (27.04.2014)

Класс G01C21/02 с помощью астрономических средств

способ обзора небесной сферы с космического аппарата для наблюдения небесных объектов и космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения тел солнечной системы, реализующая указанный способ -  патент 2517800 (27.05.2014)
способ и система контроля целостности измерений в навигационной системе -  патент 2464531 (20.10.2012)
способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд -  патент 2454631 (27.06.2012)
способ компьютерной астронавигации и коллиматорная визирная труба для его осуществления -  патент 2419073 (20.05.2011)
способ ориентации и автономной навигации космического аппарата системы мониторинга земли и околоземного пространства -  патент 2376213 (20.12.2009)
астровизирное устройство -  патент 2319109 (10.03.2008)
способ орбитального построения навигационной спутниковой системы -  патент 2314232 (10.01.2008)
способ построения низкоорбитальной спутниковой сетевой навигационной системы -  патент 2299837 (27.05.2007)
комплексная навигационная система для летательных аппаратов различных классов (варианты) -  патент 2182313 (10.05.2002)
двухзвездный морской коллиматорный секстан и способ одновременного наблюдения пары светил с наложением их изображений -  патент 2178144 (10.01.2002)

Класс G08C21/00 Системы для передачи положения объекта относительно предварительно выбранной базовой системы, например системы передачи факсимильного изображения

система отслеживания положения покупателей магазина в реальном времени с помощью множественной сети связи -  патент 2470362 (20.12.2012)
способ определения места хранения предмета с использованием радиочастотных меток -  патент 2444025 (27.02.2012)
способ передачи сообщений и система для его осуществления (варианты) -  патент 2422919 (27.06.2011)
малогабаритная система видеонаблюдения за наземной обстановкой -  патент 2387584 (27.04.2010)
способ определения места хранения предмета с использованием радиочастотных меток -  патент 2378661 (10.01.2010)
устройство для передачи и приема информации с подвижного объекта -  патент 2296424 (27.03.2007)
сообщающий регулятор для управления системой транспортировки газа -  патент 2294554 (27.02.2007)
устройство системы электронного слежения, в особенности системы видеомониторинга -  патент 2291494 (10.01.2007)
комплекс оборудования индивидуального технического мониторинга -  патент 2250502 (20.04.2005)
система наблюдения за наземной обстановкой -  патент 2248307 (20.03.2005)
Наверх