способ разложения сероводорода и/или меркаптанов

Классы МПК:C01B3/06 реакцией неорганических соединений, содержащих положительный ион водорода, например воды, кислот, оснований, аммиака, с неорганическими восстановителями
C01B3/26 с использованием катализаторов
C01B17/04 из газообразных соединений серы, в том числе из газообразных сульфидов 
Автор(ы):, , , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова СО РАН (RU)
Приоритеты:
подача заявки:
2003-10-07
публикация патента:

Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода и/или меркаптанов, и может применяться для производства водорода и серы из сероводорода, а также для очистки от сероводорода и меркаптанов газовых смесей. Описан способ разложения сероводорода и/или меркаптана, включающий пропускание сероводород- и/или меркаптансодержащего газа через слой твердого материала, способного разлагать сероводород с выделением водорода и/или углеводородсодержащего газа и образованием серосодержащих соединений на поверхности материала. При этом стадию разложения осуществляют в хемосорбционно-каталитическом режиме при температуре ниже температуры плавления серы с получением водорода и/или углеводородов и поверхностных хемосорбированных серосодержащих соединений. Реактивацию осуществляют при температуре ниже температуры плавления серы, а регенерацию осуществляют при температуре выше температуры плавления серы. Технический результат - процесс разложения осуществляют при низкой температуре, например, комнатной, при этом отсутствует необходимость частой регенерации катализатора после каждой стадии хемосорбции.

Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода и меркаптанов (тиолов), и может применяться для производства водорода и серы из сероводорода, а также для очистки от сероводорода и меркаптанов газовых смесей.

Сероводород является основным побочным продуктом нефтепереработки и гидрометаллургии, в больших количествах до 50 об.% содержится в газоконденсатных месторождениях природного газа, является основным продуктом разложения многих минеральных и органических веществ. Одновременно с этим, сероводород является сильным токсическим ядом, вызывающим отравление живых организмов. Поэтому отходящие газы всех промышленных производств должны быть тщательно очищены от сероводорода. В то же время, сероводород может быть исходным сырьем для производства ценного химического продукта - водорода.

Меркаптаны являются побочными продуктами разложения минеральных и органических веществ, присутствуют в виде примесей в газообразных продуктах нефтепереработки, в значительных количествах могут присутствовать в газоконденсатных месторождениях природного газа. Меркаптаны являются токсичными веществами с очень неприятным запахом, поэтому отходящие газы промышленных производств должны быть тщательно очищены от меркаптанов. В то же время, меркаптаны нашли широкое применение в качестве одорантов бытовых газов, где они используются для обнаружения их утечки. Наличие меркаптанов в углеводородных газах приводит к дезактивации катализаторов конверсии этих газов в ценные продукты, поэтому данные газы тоже должны быть тщательно очищены от меркаптанов.

Прямое термическое разложение сероводорода на водород и серу по реакции:

H2Sспособ разложения сероводорода и/или меркаптанов, патент № 2239593H 2+S-Q (1)

является сильно эндотермическим процессом и может с заметной скоростью протекать лишь при высоких температурах. Известен способ термического разложения сероводорода на водород и серу, включающий пропускание сероводородсодержащего газа через реакционную зону при температуре 850-1600°С, где происходит разложение H2S на водород и серу и последующее охлаждение указанного газа до температуры 110-150°С для конденсации образовавшейся серы (US 4302434, С 01 В 17/04, 24.11.81). Недостатками известного способа являются: высокая температура, требуемая для достижения высокой степени разложения сероводорода; высокое потребление энергии на осуществление реакции и компенсацию возможных теплопотерь; возможность снижения степени разложения сероводорода за счет обратного взаимодействия водорода и серы при охлаждении газа; невозможность применения способа для переработки газов, содержащих углеводороды и другие примеси, которые могут подвергаться пиролизу при высокой температуре; низкая эффективность процесса при снижении концентрации сероводорода в исходном сероводородсодержащем газе; необходимость применения специальных дорогостоящих конструкционных материалов с повышенной термостойкостью для оформления высокотемпературной реакционной зоны. Кроме того, проведение реакции разложения сероводорода при высокой температуре приводит к образованию газообразной серы, состоящей из энергонасыщенных молекул S2. Последнее обстоятельство неблагоприятно сказывается на общей термодинамике всего процесса, поскольку известно, что получение менее энергонасыщенных продуктов в конденсированном (жидком или твердом) состоянии благоприятствует смещению равновесия реакции в сторону образования продуктов реакции.

Известно, что катализаторы не влияют на смещение равновесия реакции (1), однако их использование позволяет, в ряде случаев, сместить равновесие реакции (1) в сторону образования продуктов. Один из известных приемов демонстрирует способ каталитического разложения сероводорода на водород и серу, включающий циркуляцию сероводородсодержащего газа через слой катализатора при температуре 450-800°С с отводом образовавшейся серы из циркулирующего газа (US 3962409, С 01 В 17/04, 8.06.76). Достоинством способа является относительно низкая температура осуществления реакции разложения сероводорода. Недостатком известного способа является низкая равновесная степень разложения сероводорода в указанном диапазоне температур не более 15%.

Известен способ разложения сероводорода на водород и серу, включающий периодическое пропускание сероводородсодержащего газа через слой сорбента, содержащего сульфиды железа, кобальта или никеля, при температуре 258-536°С, которое чередуют с периодическим нагревом сорбента до температур около 700°С для его регенерации (US 2979384, 423/573, 01.04.61). Во время пропускания сероводородсодержащего газа указанные компоненты сорбента взаимодействуют с сероводородом с образованием газообразного водорода и твердых полисульфидов указанных металлов. Во время регенерации сорбента происходит термическое разложение указанных полисульфидов с образованием исходных сульфидов и паров элементарной серы. Достоинством известного способа является возможность достижения высокой степени разложения сероводорода. Недостатком известного способа является относительно высокая температура разложения сероводорода, дальнейшее снижение которой лимитируется малой скоростью протекания указанных химических реакций при пониженной температуре, а также высокая температура регенерации сорбента.

Однако использование катализаторов позволяет направить реакцию (1) по новому маршруту, что может существенно понизить температуру реакции (1). Именно эта возможность заложена в данном изобретении. В этом случае, технический эффект разработанного способа заключается в сочетании сопряженного хемосорбционно-каталитического процесса разложения сероводорода и/или меркаптанов на поверхности катализатора при температуре ниже температуры плавления серы, с последующим периодическим удалением серы с поверхности катализатора при температуре выше точки ее плавления. Разработанный способ позволяет снизить температуру хемосорбционно-каталитической стадии ниже температуры плавления серы (110-120°С), причем снижение температуры благоприятствует увеличению степени покрытия поверхности диссоциативно хемосорбированным сероводородом, а следовательно, увеличивается емкость катализатора по отношению к адсорбированному сероводороду. Кроме того, термодинамический эффект достигается путем получения серы в конденсированном состоянии, поэтому существенно снижается температура регенерации катализатора выше 110°С, но ниже 350°С и конденсации твердой серы. Аналогично протекает процесс разложения меркаптанов. Это позволяет значительно упростить процесс и удешевить оборудование для осуществления способа, существенно снизить энергетические затраты на его осуществление, а также дает возможность переработки сероводород- и меркаптансодержащих газов без предварительного концентрирования H2S и меркаптанов, а также без удаления из них углеводородов и других примесей.

Способ осуществляют следующим образом.

Сероводородсодержащий и/или меркаптансодержащий газ с исходной температурой ниже температуры плавления серы пропускают через слой твердого катализатора, обладающего способностью диссоциативно хемосорбировать сероводород и/или меркаптан в этой области температур. При этом происходит сопряженная хемосорбция сероводорода и/или меркаптана с образованием газообразного водорода и/или углеводорода и твердых серосодержащих продуктов хемосорбции на поверхности твердого катализатора. Выходящий из слоя твердого катализатора водород и/или углеводородсодержащий газ направляют на выделение продуктового водорода или углеводорода или используют каким-либо другим способом. По мере заполнения хемосорбционной емкости катализатора и появления сероводорода или меркаптана в газовой фазе на выходе из слоя твердого катализатора, пропускание газа через слой твердого катализатора прекращают и начинают пропускать через указанный слой реактивирующий газ, не содержащий сероводород, или содержащий его в концентрации, не превышающей его концентрацию в исходном сероводородсодержащем газе. Температура реактивирующего газа должна быть ниже температуры плавления серы 110-120°С, поэтому сера не удаляется с поверхности катализатора, но конденсируется на поверхности катализатора, освобождая каталитически активные центры. Таким образом, происходит реактивация катализатора. Затем вновь подают исходный газ, после заполнения поверхности катализатора хемосорбированным сероводородом и/или меркаптаном начинают вновь пропускать реактивирующий газ при температуре ниже температуры плавления серы, при этом происходит накопление твердой серы на поверхности катализатора. Этот цикл хемосорбция - реактивация катализатора продолжают многократно без изменения хемосорбционной емкости катализатора, при этом твердая сера накапливается на поверхности катализатора в количестве до 50-100 мас.%. После того как твердая сера заблокирует активные центры катализатора, температуру регенерации повышают до температуры выше плавления серы, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно за слоем катализатора. Таким образом, происходит регенерация катализатора. Цикл процессов хемосорбция - реактивация - регенерация осуществляют многократно без изменения хемосорбционной емкости и активности катализатора. При этом конечным продуктом является водород и/или углеводород и твердая сера. Для обеспечения непрерывности способ ведут параллельно в не менее чем двух слоях твердого катализатора, в каждом из которых попеременно чередуют режимы пропускания исходного газа, реактивирующего и регенерирующего газа.

Одним из вариантов осуществления разработанного способа является контактирование сероводородсодержащего и/или меркаптансодержащего газа с катализатором в замкнутом объеме с циркуляцией газовой фазы или без таковой. Аналогично, реактивация катализатора может осуществляться в замкнутом объеме с циркуляцией газовой фазы через слой хемосорбента - катализатора или без таковой. Аналогично, стадия регенерации катализатора может также осуществляться в замкнутом объеме с циркуляцией газовой фазы через слой хемосорбента - катализатора или без таковой.

Основным преимуществом предлагаемого способа является возможность разложения сероводорода и/или меркаптанов при низкой температуре, например, комнатной и ниже, при этом образующаяся сера накапливается на поверхности катализатора, однако не дезактивируя активный компонент катализатора. По мере заполнения поверхности катализатора твердой серой до такого уровня, когда начинается блокировка активного компонента твердой серой, катализатор нагревают в атмосфере регенерирующего газа до температуры выше температуры плавления серы. Жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно за каталитической зоной. Таким образом, освобождается поверхность катализатора и происходит регенерация активного компонента.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Переработке подвергают природный газ, содержащий 3 об.% сероводорода, а также азот, углекислый газ и пары воды. Указанный газ пропускают при температуре 25°С через слой гранулированного графитоподобного углеродного материала, полученного по известному способу (US 4978649, C 01 В 31/10, 18.12.90). Выходящий из слоя указанного материала газ содержит водород в концентрации до 3 об.%, а также азот, углекислый газ и пары воды, сероводород отсутствует. Через 45 мин после начала пропускания сероводородсодержащего газа, когда в выходящем из слоя указанного катализатора газе начинает снижаться концентрация водорода, а также появляется не прореагировавший сероводород, прекращают пропускание сероводородсодержащего газа и начинают пропускание реактивирующего газа, содержащего азот, метан и углекислый газ, с температурой 40°С. Реактивацию заканчивают через 30 мин, катализатор охлаждают до комнатной температуры и вновь начинают подавать исходный сероводородсодержащий газ. Разложение сероводорода продолжается в течение 45 мин, когда на выходе из слоя катализатора появляется сероводород, поэтому подачу газа прекращают. Через катализатор начинают пропускать реактивирующий газ при температуре 40°С, через 30 мин реактивацию прекращают и вновь начинают подавать исходный сероводородсодержащий газ при комнатной температуре. Емкость катализатора по сероводороду не изменяется. Эту процедуру хемосорбция - реактивация продолжают многократно без уменьшения емкости катализатора по сероводороду. После накопления на поверхности катализатора твердой серы в количестве более 20 мас.%, емкость катализатора по сероводороду начинает уменьшаться, поэтому проводят процедуру регенерации катализатора. Для этого через слой катализатора начинают пропускать реактивирующий газ при температуре 150°С, при этом жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно за слоем катализатора и охлажденном до комнатной температуры. Пропускание регенерирующего газа осуществляют в течение 30 мин, после чего вновь производят пропускание сероводородсодержащего газа и так далее.

Пример 2. Переработке подвергают газ, содержащий 5 об.% сероводорода, а также азот, кислород и смесь легких углеводородов. Указанный газ пропускают при температуре 0°С через слой дисульфида молибдена МоS2. Выходящий из слоя указанного материала газ содержит водород в количестве 5 об.%, а также азот, кислород и смесь легких углеводородов, сероводород отсутствует. Через 40 мин после начала пропускания сероводородсодержащего газа на выходе из слоя указанного материала появляется сероводород, поэтому подачу исходного газа прекращают и начинают подавать реактивирующий газ - азот при температуре 50°С. Через 20 мин реактивацию заканчивают и вновь начинают подавать исходный сероводородсодержащий газ при 0°С. Циклы хемосорбция - реактивация повторяют многократно до заполнения поверхности дисульфида молибдена твердой серой. Затем через слой указанного материала подают регенерирующий газ азот при температуре 175°С, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно после каталитического слоя и охлажденном до 0°С. Регенерацию проводят в течение 15 мин, затем через слой указанного материала вновь начинают подачу исходной смеси газов, содержащих сероводород. Данный цикл хемосорбционно-каталитическое разложение сероводорода - реактивация твердого катализатора - регенерация катализатора с конденсацией серы в конденсаторе, расположенном непосредственно за каталитической зоной, осуществляют многократно со 100% конверсией сероводорода и без потери качества газа, выходящего из слоя твердого материала.

Пример 3. Переработке подвергают природный газ, содержащий 40 об.% сероводорода. Указанный газ пропускают через слой хемосорбционно-каталитического материала - сульфид кобальта CoxSy при температуре -5°С. Выходящий из слоя сульфидного катализатора природный газ содержит до 40 об.% водорода, сероводород отсутствует. Через 20 мин после начала пропускания указанного газа на выходе из слоя сульфидного катализатора начинает уменьшаться концентрация водорода и появляется сероводород, поэтому пропускание исходного газа прекращают и изолируют реакционный объем известными способами. После этого начинают циркулировать газовую фазу через слой катализатора при температуре 45°С. Через 40 мин реактивацию заканчивают и вновь начинают подавать исходный сероводородсодержащий газ при температуре -5°С. Циклы хемосорбция - реактивация повторяют многократно до заполнения поверхности катализатора твердой серой. Затем через слой указанного катализатора подают регенерирующий газ азот при температуре 190°С, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно после каталитического слоя и охлажденном до 0°С. Через 10 мин после начала регенерации катализатора подачу регенерирующего газа прекращают и вновь подают исходный сероводородсодержащий газ. Процесс проводят в периодическом режиме многократно без уменьшения 100% конверсии сероводорода и без уменьшения хемосорбционной емкости катализатора.

Пример 4. Переработке подвергают газ, состоящий из смеси синтез-газа (СО+Н2) и 0,1 об.% сероводорода. Указанный газ пропускают через слой сульфидного катализатора состава COxMO ySz, охлажденного до -10°С. На выходе из слоя указанного материала перерабатываемый газ содержит СО и водород, сероводород отсутствует. Через 45 мин после начала пропускания в выходящем газе появляется сероводород, поэтому подачу исходного газа прекращают и начинают подавать реактивирующий газ - азот при температуре 60°С. Через 20 мин реактивацию заканчивают и начинают вновь подавать исходную газовую смесь при температуре -10°С. Циклы хемосорбция - реактивация повторяют многократно до заполнения поверхности катализатора твердой серой. Затем слой указанного катализатора изолируют и нагревают при температуре 120°С, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно после каталитического слоя и охлажденном до 0°С. Через 50 мин после начала регенерации катализатора вновь подают исходный сероводородсодержащий газ. Процесс проводят в периодическом режиме многократно без уменьшения 100% конверсии сероводорода и без уменьшения хемосорбционной емкости катализатора.

Пример 5. Переработке подвергают газ, состоящий из смеси 90 об.% азота и 10 об.% сероводорода. Указанный газ пропускают через слой хемосорбционно-каталитического материала - пористый металлический никель, охлажденного до -20°С. На выходе из слоя указанного материала перерабатываемый газ содержит азот и водород, сероводород отсутствует. Через 100 мин после начала пропускания в выходящем газе появляется сероводород, поэтому подачу исходного газа прекращают и начинают подавать реактивирующий газ - водород при температуре 60°С. Через 20 мин реактивацию заканчивают и начинают вновь подавать исходную газовую смесь при температуре -20°С. Циклы хемосорбция - реактивация повторяют многократно до заполнения поверхности катализатора твердой серой. Затем через слой указанного катализатора подают регенерирующий газ - азот при температуре 300°С, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно после каталитического слоя и охлажденном до 0°С. Через 50 мин после начала регенерации катализатора подачу регенерирующего газа прекращают и вновь подают исходный сероводородсодержащий газ при температуре -20°С. Процесс проводят в периодическом режиме многократно без уменьшения 100% конверсии сероводорода и без уменьшения хемосорбционной емкости катализатора.

Пример 6. Переработке подвергают газ, состоящий из смеси кислорода и 0,01 об.% сероводорода. Указанный газ пропускают через слой хемосорбционно-каталитического материала - пористый борид никеля, охлажденного до 20°С. На выходе из слоя указанного материала перерабатываемый газ содержит кислород и водород, сероводород отсутствует. Через 10 мин после начала пропускания в выходящем газе появляется сероводород, поэтому подачу исходного газа прекращают и начинают подавать реактивирующий газ - азот при температуре 60°С. Через 20 мин реактивацию заканчивают и начинают вновь подавать исходную газовую смесь при температуре 20°С. Циклы хемосорбция - реактивация повторяют многократно до заполнения поверхности катализатора твердой серой. Затем через слой указанного катализатора подают регенерирующий газ азот при температуре 140°С, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно после каталитического слоя и охлажденном до 0°С. Через 20 мин после начала регенерации катализатора подачу регенерирующего газа прекращают и вновь подают исходный сероводородсодержащий газ. Процесс проводят в периодическом режиме многократно без уменьшения 100% конверсии сероводорода и без уменьшения хемосорбционной емкости катализатора.

Пример 7. Переработке подвергают природный газ, содержащий метан, 5 об.% сероводорода и 0,3 об.% метилмеркаптана (метантиола). Указанный газ пропускают при комнатной температуре через слой сульфидного катализатора состава CoxMoy Sz, нанесенного на пористый носитель - оксид алюминия. На выходе из слоя указанного материала перерабатываемый газ содержит метан и водород, сероводород и метилмеркаптан отсутствуют. Через 90 мин после начала пропускания в выходящем газе появляются сероводород и метилмаркаптан, поэтому подачу исходного газа прекращают и начинают подавать реактивирующий газ - азот при температуре 50°С. Через 20 мин реактивацию заканчивают и начинают вновь подавать исходную газовую смесь при комнатной температуре. Циклы хемосорбция - реактивация повторяют многократно до заполнения поверхности катализатора твердой серой. Затем слой указанного катализатора изолируют и нагревают при температуре 120°С, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно после каталитического слоя и охлажденном до 0°С. Через 50 мин после начала регенерации катализатора вновь подают исходный сероводород- и метилмеркаптансодержащий газ. Процесс проводят в периодическом режиме многократно без уменьшения 100% конверсии сероводорода и без уменьшения хемосорбционной емкости катализатора.

Пример 8. Переработке подвергают газ, содержащий этан и 5 об.% этилмеркаптана (этантиола). Указанный газ пропускают при комнатной температуре через слой сульфидного катализатора состава NixMOySz , нанесенного на пористый носитель - силикагель. На выходе из слоя указанного материала перерабатываемый газ содержит этан, этилмеркаптан отсутствует. Через 90 мин после начала пропускания в выходящем газе появляются этилмеркаптан, поэтому подачу исходного газа прекращают и начинают подавать реактивирующий газ - азот при температуре 60°С. Через 30 мин реактивацию заканчивают и начинают вновь подавать исходную газовую смесь при комнатной температуре. Циклы хемосорбция - реактивация повторяют многократно до заполнения поверхности катализатора твердой серой. Затем слой указанного катализатора изолируют и нагревают при температуре 120°С, жидкая сера стекает с поверхности катализатора и конденсируется в конденсаторе, расположенном непосредственно после каталитического слоя и охлажденном до 0°С. Через 50 мин после начала регенерации катализатора вновь подают исходный этан и этилмеркаптан. Процесс проводят в периодическом режиме многократно без уменьшения 100% конверсии этилмеркаптана и без уменьшения хемосорбционной емкости катализатора.

Таким образом, как видно из приведенных примеров, предлагаемый способ позволяет осуществлять разложение сероводорода и/или меркаптанов при низкой температуре, например, комнатной, при этом отсутствует необходимость частой регенерации катализатора после каждой стадии хемосорбции.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ разложения сероводорода и/или меркаптанов, включающий контактирование сероводород- и/или меркаптансодержащего газа через слой твердого материала, способного разлагать сероводород и/или меркаптан с выделением водорода и/или углеводородсодержащего газа и образованием серосодержащих соединений на поверхности материала, периодическую регенерацию материала путем разложения указанных серосодержащих соединений и выделения серы, отличающийся тем, что стадию разложения осуществляют в хемосорбционно-каталитическом режиме при температуре ниже температуры плавления серы с получением водорода и/или углеводородсодержащего газа и поверхностных хемосорбированных серосодержащих соединений, реактивацию осуществляют при температуре ниже температуры плавления серы, а регенерацию осуществляют при температуре выше температуры плавления серы.


Патентный поиск по классам МПК-8:

Класс C01B3/06 реакцией неорганических соединений, содержащих положительный ион водорода, например воды, кислот, оснований, аммиака, с неорганическими восстановителями

Патенты РФ в классе C01B3/06:
фотокатализатор, способ его приготовления и способ получения водорода -  патент 2522605 (20.07.2014)
топлива для генерирующих водород баллончиков -  патент 2444472 (10.03.2012)
системы, способы и композиции для получения синтетических углеводородных соединений -  патент 2394871 (20.07.2010)
катализатор (варианты), способ его приготовления и процесс получения водорода из растворов гидридов -  патент 2323045 (27.04.2008)
катализатор фотохимических реакций на основе диоксида титана и способ его получения -  патент 2287365 (20.11.2006)
способ разложения сероводорода и/или меркаптанов -  патент 2261838 (10.10.2005)
способ получения водорода и устройство для его осуществления -  патент 2258028 (10.08.2005)
способ использования вещества мантии земли для получения водорода -  патент 2244817 (20.01.2005)
способ разложения сероводорода -  патент 2239594 (10.11.2004)
способ приготовления cds-фотокатализатора для получения водорода и способ получения водорода с его применением -  патент 2238145 (20.10.2004)

Класс C01B3/26 с использованием катализаторов

Патенты РФ в классе C01B3/26:
способ производства железа прямым восстановлением и устройство для его осуществления -  патент 2528525 (20.09.2014)
свч плазменный конвертор -  патент 2522636 (20.07.2014)
устройство для получения углерода и водорода из углеводородного газа -  патент 2488553 (27.07.2013)
способ осуществления каталитической эндотермической реакции -  патент 2462502 (27.09.2012)
способ получения нановолокнистого углеродного материала и водорода -  патент 2462293 (27.09.2012)
способ получения водорода прямым разложением природного газа и снг -  патент 2446010 (27.03.2012)
способ и устройство для получения обогащенного водородом топлива посредством разложения плазмы метана на катализаторе при микроволновом воздействии -  патент 2427527 (27.08.2011)
установка для получения водорода и углеродных наноматериалов и структур из углеводородного газа, включая попутный нефтяной газ -  патент 2425795 (10.08.2011)
теплообменный реактор внутреннего сгорания для эндотермической реакции в неподвижном слое -  патент 2424847 (27.07.2011)
способ получения водорода и углеродных нанотрубок из углеводородного газа -  патент 2414418 (20.03.2011)

Класс C01B17/04 из газообразных соединений серы, в том числе из газообразных сульфидов 

Патенты РФ в классе C01B17/04:
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ получения элементной серы из отходящего газа, содержащего диоксид серы -  патент 2523204 (20.07.2014)
способ очистки газа от сероводорода -  патент 2520554 (27.06.2014)
способ управления процессом восстановления сернистых дымовых газов -  патент 2516635 (20.05.2014)
электрохимический способ получения элементной серы из сероводорода в органических растворителях -  патент 2516480 (20.05.2014)
способ комплексной подготовки углеводородного газа -  патент 2509597 (20.03.2014)
способ получения серы -  патент 2508247 (27.02.2014)
способ очистки газов от сероводорода -  патент 2505344 (27.01.2014)
электрокаталитический способ получения элементной серы из сероводорода -  патент 2498938 (20.11.2013)
способ получения элементарной серы из высококонцентрированных сероводородсодержащих газов -  патент 2495820 (20.10.2013)


Наверх