способ электролитического рафинирования меди и никеля из медно-никелевых сплавов

Классы МПК:C25C1/08 никеля или кобальта
C25C1/12 меди
Автор(ы):, , , , ,
Патентообладатель(и):Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет) (RU)
Приоритеты:
подача заявки:
2003-04-29
публикация патента:

Изобретение относится к металлургии цветных металлов и может быть использовано на предприятиях по получению меди, никеля и других металлов и их соединений, в частности золота. Способ электролитического рафинирования меди и никеля из медно-никелевых сплавов, содержащих примеси драгоценных металлов, включает электрохимическое растворение анодов из медно-никелевого сплава, осаждение меди с получением никелевого раствора и шлама. Растворение анодов ведут в отделенном диафрагмой анодном пространстве, во взвешенном слое шлама, обеспечивается снижение расхода электроэнергии (на 10%) и повышение концентрации содержания золота в шламе. 1 табл.

Формула изобретения

Способ электролитического рафинирования меди и никеля из медно-никелевых сплавов, содержащих примеси драгоценных металлов, заключающийся в электрохимическом растворении анодов из медно-никелевого сплава, осаждении меди с получением никелевого раствора и шлама, отличающийся тем, что растворение анодов ведут в отделенном диафрагмой анодном пространстве, во взвешенном слое шлама.

Описание изобретения к патенту

Изобретение относится к металлургии цветных металлов и может быть использовано на предприятиях по получению меди, никеля и других металлов и их соединений из сплавов, в частности золота.

Существуют следующие способы электрорафинирования металлов.

- Никелевые аноды состава,%: Ni 89-92; Сu 4-5; Ре 1,0-3,5; Со 1,0-1,2; 8 0,8-2,0; С 0,1-0,3 подвергаются электролитическому рафинированию при плотности тока 200-250 А/м2 в течение 4-5 суток. Температура раствора должна быть в пределах 55-65способ электролитического рафинирования меди и никеля из   медно-никелевых сплавов, патент № 2237750С (Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии. - М.: Металлургиздат, 1963 г, стр.289-388).

- Электролитическое рафинирование никеля, включающее электрохимическое растворение анодов в сульфат-хлоридном электролите с концентрацией ионов хлора 60-65 г/л при содержании меди в анодах 16-23% (Авторское свидетельство СССР №1397541).

- Известен способ, при котором электролит для электрорафинирования меди, содержащий серную кислоту, сульфат меди, ионы хлора, тиомочевину и мездровый клей для улучшения качества поверхностной меди, уменьшения содержания в ней примесей и снижения расхода электроэнергии, дополнительно содержит фторированную четвертичную аммониевую соль (Авторское свидетельство СССР №1592398).

Недостатками этих способов являются:

1. Потери драгоценных металлов в шламе.

2. Повышенный расход электроэнергии.

Известен способ электролитического растворения меди, проводимый в растворах, содержащих CuSO4 5H2O от 120-180 г/л и 120-200 г/л H2SO4 и золото. Анодами служат литые пластины из красной меди, катодами - тонкие листы из электролитической меди. Расстояние между осями одноименных электродов равно 40-50 мм, плотность тока 160-250 А/м2. Электролиз ведется при температуре от 55-65способ электролитического рафинирования меди и никеля из   медно-никелевых сплавов, патент № 2237750С в течение 7-8 суток в условиях циркуляции электролита (Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии. - М.: Металлургиздат, 1963 г., стр.144).

Однако данный способ имеет следующие недостатки:

- повышенный расход электроэнергии,

- шлам осаждается быстро и не вступает в электрохимические реакции, из-за чего, соответственно, снижается концентрация содержания драгоценных металлов в шламе.

Известен способ рафинирования меди и никеля из медно-никелевых сплавов, принятый за прототип (Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии - М.: Металлургиздат, 1963 г., стр.213, 214). Способ заключается в электролитическом растворении анодов из медноникелевого сплава, осаждении меди с получением никелевого раствора и шлама. Афинаж сплава ведут при плотности тока 100-150 а/м2 и температуре 50-65способ электролитического рафинирования меди и никеля из   медно-никелевых сплавов, патент № 2237750С. Плотность тока лимитируется диффузионной кинетикой и зависит от концентрации солей других металлов в растворе. Сплав содержит около 70% меди, 30% никеля и до 0,5% прочих металлов, в частности золота.

Недостатком способа является высокий расход электроэнергии и потери драгоценных металлов, в частности золота, содержащихся в сплаве.

Техническими результатами предлагаемого изобретения являются:

1. Снижение расхода электроэнергии.

2. Повышение содержания золота в шламе.

Технический результат достигается тем, что в способе электролитического рафинирования меди и никеля из медно-никелевых сплавов, содержащих примеси драгоценных металлов, заключающемся в электрохимическом растворении анодов из медно-никелевого сплава, осаждении меди с получением никелевого раствора и шлама, согласно изобретению электрохимическое растворение анодов ведут в отделенном диафрагмой анодном пространстве, во взвешенном слое шлама.

Способ реализуется следующим образом.

В электролитической ванне медно-никелевый анод помещают в сетчатую диафрагму. Под действием электрического тока анод начинает растворяться, медь осаждается на катоде, никель переходит в раствор, а частички шлама падают вниз. К дну ванны подведен газовый реагент, обеспечивающий взвешенное состояние шлама, образуется “кипящий слой”. В качестве газового реагента выбирается инертный газ, который обеспечивает “кипение” слоя, не позволяя шламу быстро осаждаться, и тем самым способствует вступлению шлама в электрохимическую реакцию, что и увеличивает концентрацию содержания золота в шламе.

Оптимальность отличительных признаков состоит в следующем.

- Образовавшаяся на поверхности анода пленка Cu2O сдирается “кипящим слоем” шлама, диффузионный потенциал чистой металлической поверхности уменьшается, вследствие увеличивается выход по току и снижается удельный расход электроэнергии.

- Во взвешенном состоянии находится Сu2О, он вступает в химические взаимодействия, больше цветных металлов (меди и никеля) переходит в раствор, соответственно увеличивается содержание золота и других драгоценных металлов. Изложенное подтверждается следующими примерами, приведенными в таблице.

способ электролитического рафинирования меди и никеля из   медно-никелевых сплавов, патент № 2237750

Благодаря предлагаемому способу достигаются уменьшение расхода электроэнергии на 10% и повышается концентрация содержания золота и других драгоценных металлов в шламе в 1,5-2 раза.

Класс C25C1/08 никеля или кобальта

способ получения ультрамикродисперсного порошка оксида никеля на переменном токе -  патент 2503748 (10.01.2014)
способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы -  патент 2484159 (10.06.2013)
способ утилизации отработанного раствора химического никелирования -  патент 2481421 (10.05.2013)
способ электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений -  патент 2401312 (10.10.2010)
способ электроизвлечения компактного никеля -  патент 2361967 (20.07.2009)
анодная ячейка для электровыделения цветных металлов -  патент 2353712 (27.04.2009)
способ получения электролитного никеля -  патент 2303086 (20.07.2007)
способ восполнения дефицита никеля в процессе электролитического рафинирования никеля -  патент 2273683 (10.04.2006)
способ изготовления диафрагменного элемента ячейки для электролитического извлечения металлов из водных растворов и диафрагменный элемент -  патент 2256729 (20.07.2005)
способ электролитического получения никеля -  патент 2247796 (10.03.2005)

Класс C25C1/12 меди

способ переработки электронного лома на основе меди, содержащего благородные металлы -  патент 2486263 (27.06.2013)
способ получения медных порошков из медьсодержащих аммиакатных отходов -  патент 2469111 (10.12.2012)
способ получения высококачественной меди -  патент 2455374 (10.07.2012)
способ изготовления катода для электролитического получения меди -  патент 2439207 (10.01.2012)
способ переработки сульфидных медно-никелевых сплавов -  патент 2434065 (20.11.2011)
способ извлечения меди из оксидных или сульфидных руд и их концентратов -  патент 2380437 (27.01.2010)
способ электролитического рафинирования меди в блок-сериях ванн ящичного типа -  патент 2366763 (10.09.2009)
способ получения кристаллов меди пониженной удельной плотности для коррекции биофизических полей биообъектов -  патент 2350693 (27.03.2009)
катод для получения меди -  патент 2346087 (10.02.2009)
способ электрохимического выделения меди в хлористоводородном растворе -  патент 2337182 (27.10.2008)
Наверх