способ регулирования остеогенеза

Классы МПК:A61N2/00 Магнитотерапия
Автор(ы):, , ,
Патентообладатель(и):Подковкин Владимир Георгиевич (RU),
Волова Лариса Теодоровна (RU),
Власов Михаил Юрьевич (RU),
Мичурина Надежда Юрьевна (RU)
Приоритеты:
подача заявки:
2002-12-05
публикация патента:

Изобретение относится к медицине и предназначено для регулирования остеогенеза. Однократно имплантируют смесь аллогенного гидроксиапатита и измельченного деминерализованного костного матрикса. Далее на организм воздействуют неоднородным по величине и направлению магнитным полем с индукцией, хаотически изменяющейся в пространстве от 0 до 100 мкТл, с градиентом индукции от 0 до 5 мкТл/см с одновременным экранированием от естественного геомагнитного поля в течений 1-2 месяцев. Способ позволяет повысить эффективность регулирования остеогенеза.

Формула изобретения

Способ регулирования остеогенеза, основанный на введении в организм костных трансплантатов и воздействии на организм магнитными полями, отличающийся тем, что однократно имплантируют смесь аллогенного гидроксиапатита и измельченного деминерализованного костного матрикса, далее на организм воздействуют неоднородным по величине и направлению магнитным полем с индукцией, хаотически изменяющейся в пространстве 0 - 100 мкТл, с градиентом индукции 0 - 5 мкТл/см, с одновременным экранированием от естественного геомагнитного поля в течение 1-2 месяцев.

Описание изобретения к патенту

Изобретение относится к области медицины, в частности к способам лечения травматологических заболеваний, регулирования процесса остеогенеза.

В настоящее время проводятся исследования по изучению имплантации различных гидроксиапатитсодержащих материалов.

Композитные материалы, включающие гидроксиапатит, фосфат кальция, коллаген, деминерализованный костный матрикс, используются для лечения ортопедических заболеваний и облегчения последствий травм, замещая поврежденные участки кости.

При трансплантации деминерализованного костного матрикса, особенно если трансплантат достаточно крупного размера, в процессе замещения этого трансплантата костной тканью часто происходит деформация вновь образованной костной ткани, образуются костные наплывы.

Таким образом, возникает задача регулирования процессов остеогенеза и рассасывания трансплантата.

Наиболее близким по технической сущности и достигаемому результату является способ стимуляции остеогенеза, то есть костеобразования несросшихся переломов и ложных суставов длинных трубчатых костей (Применение магнитных полей в клинике. Тезисы докладов Куйбышевской областной конференции. Куйбышев, июнь 1976 г., с.151-152).

В известном способе проводилась магнитотерапия после хирургического вмешательства с целью ускорения регенеративного остеогенеза. Постоянное электромагнитное поле явилось эффективным средством воздействия на механизм регенерации костной ткани и стимуляции регенеративного остеогенеза при лечении медленно срастающихся костей и ложных суставов при переломах.

Недостатком известного способа является невозможность регулирования скорости остеогенеза и деструкции, воздействуя на организм постоянным магнитным полем. При имплантации крупных фрагментов деминерализованного костного матрикса стимуляция остеогенеза магнитным полем может привести к деформации кости.

Техническим результатом, на достижение которого направлено создание данного изобретения, является повышение эффективности регулирования процесса остеогенеза и рассасывания трансплантата.

Поставленный технический результат достигается тем, в способе регулирования скорости остеогенеза, основанном на введении в организм костных трансплантатов и последующем воздействии на организм магнитными полями, - однократно имплантируют смесь аллогенного гидроксиапатита и измельченного деминерализованного костного матрикса, далее воздействуют на организм неоднородным по величине и направлению магнитным полем с индукцией, хаотически изменяющейся в пространстве от 0 до 100 мкТл, с градиентом индукции от 0 до 5 мкТл/см, помещая организм в экранирующую от естественного геомагнитного поля камеру, изготовленную из пермаллоя, при нахождении в ней организма в течение 1-2 месяцев.

Пример. В эксперименте исследовали четыре группы половозрелых крыс. Животным первой группы производили гетеротопическую имплантацию 50 мг деминерализованного костного матрикса в правую четырехглавую бедренную мышцу задней лапки и 50 мг смеси измельченного деминерализованного костного матрикса с аллогенным гидроксиапатитом в соотношении 1:2 - в левую бедренную мышцу. Операцию проводили под эфирным наркозом в стерильных условиях. Животным второй группы делали ложную операцию под наркозом.

Аллогенный гидроксиапатит получали из солянокислых растворов после деминерализации компактной костной ткани путем осаждения гидроокисью натрия (Патент РФ №2168998 на изобретение “Способ получения аллогенного гидроксиапатита” авторов Воловой Л.Т. и Подковкина В.Г.).

Животные третьей и четвертой групп подвергались тем же воздействиям. При этом их помещали в камеру из пермаллоя, экранирующую от естественного геомагнитного поля. В результате дополнительного намагничивания магнитное поле в камере было неоднородным по величине и направлению, с индукцией, хаотически изменяющейся в пространстве от 0 до 100 мкТл, с градиентом индукции от 0 до 5 мкТл/см.

Через два месяца животных выводили из эксперимента путем декапитации, производили сбор крови. В плазме крови животных обеих групп определяли концентрацию белково-связанного и свободного оксипролина, в сыворотке определяли активность щелочной фосфатазы.

Далее проводили статистическую обработку полученных данных с использованием критерия t Стьюдента.

Полученные результаты исследования показали, что у оперированных животных, подвергнутых воздействию искаженного геомагнитного поля, наблюдалось замедление формирования костной ткани на месте деминерализованного костного матрикса но сравнению с животными, не подвергавшимися влиянию указанного физического фактора. Отмечено снижение в плазме крови концентрации белковосвязанного и увеличение свободного оксипролина по сравнению с величинами этих показателей у животных, не подвергавшихся воздействию искаженного геомагнитного поля. При этом уровень белковосвязанного оксипролина был выше, чем у контрольных крыс, которым делали только ложную операцию. Это свидетельствует об активизации метаболизма коллагена, являющегося основным белком костной и других соединительных тканей, и о некотором замедлении процессов остеогенеза. Одновременно во всех опытных группах отмечена повышенная активность щелочной фосфатазы, что свидетельствует о достаточно высокой активности остеобластов.

Это свидетельствует о том, что скорость регенерации не была большой, а при этом снижается вероятность деформации кости и образования наплывов костной ткани, что подтверждено морфологическими исследованиями.

Класс A61N2/00 Магнитотерапия

способ восстановительного лечения нервно-мышечного аппарата у больных с ложным суставом шейки бедренной кости после эндопротезирования тазобедренного сустава -  патент 2528637 (20.09.2014)
способ размагничивания объема намагниченного тела -  патент 2528608 (20.09.2014)
способ лечения инфицированных ран и свищей у онкологических больных -  патент 2527175 (27.08.2014)
способ повышения биодоступности цисплатина в саркому -45, индуцированную в эксперименте -  патент 2527154 (27.08.2014)
способ комплексной терапии впервые выявленного туберкулеза легких -  патент 2525580 (20.08.2014)
способ восстановления функций кишечной трубки при синдроме короткой кишки -  патент 2525530 (20.08.2014)
магнитное тело и устройство управления доставкой лекарственного средства с использованием магнитного тела -  патент 2525509 (20.08.2014)
физиотерапевтическое устройство -  патент 2525278 (10.08.2014)
устройство для магнитотерапии -  патент 2525121 (10.08.2014)
способ модификации функционального состояния биологического объекта бегущим электромагнитным полем -  патент 2524418 (27.07.2014)
Наверх