водородосорбирующий сплав для аккумуляторов водорода и тепловых насосов

Классы МПК:C22C19/03 никеля
C22C28/00 Сплавы на основе металлов, не отнесенные к группам  5/00
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет"
Приоритеты:
подача заявки:
2002-05-27
публикация патента:

Изобретение относится к водородной энергетике, а именно к сплавам, используемым в аккумуляторах водорода и тепловых насосах. КПД теплового насоса, если он работает на холод, определяется по холодопроизводительности, которая зависит от водородоемкости и связана с технологическими свойствами низкотемпературного компонента (сплава), а именно, с гистерезисом, наклоном изотерм и т.д. Задачей, решаемой заявленным изобретением, является получение соединения типа AB5 для низкотемпературного компонента теплового насоса, обеспечивающего лучшую холодопроизводительность, чем ранее известные, при давлениях, близких к атмосферному в области рабочих температур. Технический результат достигается тем, что в водородосорбирующий сплав, содержащий лантан и никель, вводят мишметалл, кобальт при следующем соотношении компонентов, мас. %: Mm 0,01-32,4, La 0,01-32,1, Co 13,6, Ni - остальное. Заявленный состав сплава лантана и никеля с мишметаллом и кобальтом для аккумулятора водорода и низкотемпературного компонента теплового насоса обеспечивает повышение удельной холодопроизводительности (в кДж/дм3) на 21% по сравнению со сплавом Zr0,9Ti0,1Cr0,6Fe1,4. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

Водородосорбирующий сплав для аккумулятора водорода и низкотемпературного компонента теплового насоса, содержащий лантан и никель, отличающийся тем, что он дополнительно содержит мишметалл и кобальт при следующем соотношении компонентов, мас.%:

Мишметалл - 0,01-32,4

Лантан - 0,01-32,1

Кобальт - 13,6

Никель - Остальноеы

Описание изобретения к патенту

Изобретение относится к области водородной энергетики, а именно к сплавам, используемым в аккумуляторах водорода и тепловых насосах.

Известно, что сплавы накопители водорода (СНВ) типа АВ5 являются перспективными для использования в тепловых нacocax, поскольку обладают сравнительно высокой водородоемкостью, удельной теплотой образования, легко активируются и нетребовательны к чистоте водорода по сравнению со сплавами типа АВ2 и АВ3.

Известен водородосорбирующий сплав типа АВ2 состава Zr0,9Ti0,1Cr0,6Fe1,4 для низкотемпературного компонента таплового насоса, обладающий довольно высокой водородоемкостью (см. "Тепломассоперенос в процессах металлогидридного преобразования тепловой энергии методом тепловых волн", автореферат диссертации на соискание ученой степени кандидата технических наук Ким Кю-Джонг, специальность 05.14.05 - теоретические основы теплотехники, Минск, 2000 г. ). Основным недостатком металлогидридов на основе циркония является низкий уровень давления в системе (ниже атмосферного в 1,5-2 раза) при переходе водорода из низкотемпературного (НТ) сплава в высокотемпературный (ВТ) в процессе получения холода на температурном уровне ниже 0oС. При длительной эксплуатации теплового насоса это может привести к натеканиям со стороны окружающей среды и в конечном счете к потери его работоспособности. Другим недостатком известного состава является высокие требования к чистоте водорода, вводимого в систему из вне для заправки теплового насоса. Такие примеси, как кислород, азот, пары воды, приводят к отравлению сплава и потери его работоспособности. Предварительная тонкая очистка водорода увеличивает стоимость производства тепловых насосов и потребует создания соответствующей инфраструктуры.

Известен водородосорбирующий сплав LaNi5, который также может быть использован в тепловых насосах (Г. Алефельд, И. Фелькль "Водород в металлах", т. 2. Прикладные аспекты, с. 8, Москва, 1981 г.). Недостаток сплава - низкое давление нa плато изотерм пpи отрицательных температурах, чтo может приводить к натеканиям в систему из атмосферы.

КПД теплового насоса, eсли он работает на холод, определяется по холодопроизводительности, которая зависит от водородоемкости и связана с технологическими свойствами низкотемпературного компонента (сплава): гистерезисом, наклоном изотерм и.т.д.

Задачей, решаемой заявленным изобретением, является получение соединения типа АB5 для низкотемпературного компонента теплового насоса, обеспечивающего лучшую холодопроизводительность, чем ранее известные, при давлениях, близких к атмосферному в области paбoчих температур.

Технический результат достигается тем, что в водородосорбирующий сплав, содержащий лантан (La) и никель (Ni), вводят мишметалл (Mm), кобальт (Co), при следующем соотношении компонентов, мас.%: Mm - 001-32,4, La - 0.01-32,1, Со - 13,6, Ni - остальное.

Сущность изобретения заключается в новом качественном и количественном составе водородосорбирующего сплава типа АВ5 на основе мишметалла и лантана с никелем и кобальтом. Введение в состав сплава мишметалла, a также заявленные количественные характеристики соотношения мишметалла и лантана в сплаве, обеспечивают высокую водородоемкость, малый гистерезис и наклон изотерм при давлениях, близких к атмоферному в области рабочих температур, и высокую чувствительность давления на плато изотерм к температуре, что в целом приводит к увеличению холодопроизводительности теплового насоса в области рабочих температур сплава от -15oC до +25oС.

ОБОСНОВАНИЕ ПАРАМЕТРОВ

Получены водородосорбирующие сплавы следующего состава, мас.%:

а) Mm - 29,1, La - 3,2, Co - 13,6, Ni - остальное;

б) Мm - 24,3; La - 8,0; Cо - 13,6, Ni - остальное;

в) Mm - 19,4; La - 12,8, Сo - 13,6; Ni - остальное;

г) La - 32,1, Mm - 0,01, Co - 13,6, Ni - остальное.

На фиг. 1 представлены результаты испытаний этих сплавов при +25oС. Из фиг. 1 следует, что с увеличением содержания лантана плато давления сорбции водорода уменьшается. На фиг. 2 изображены средние значения давления из плато изотерм десорбции водорода данных составов при температуре -15oC. C увеличением содержания в сплаве лантана плато давления десорбции водорода уменьшается. Максимальное содержание водорода в сплавах заявленного состава более 6 г-ат/г-моль ИМС, средние давления десорбции не более 3,3 ата при температуре -15oС. Экспериментально установлено, что гистерезис у соединений составляет водородосорбирующий сплав для аккумуляторов водорода и   тепловых насосов, патент № 22144701,2 (фиг. 3). Кроме того, фиг.1 и 2 показывают, что сплавы, имеющие состав в мас.%: Мm - 0,01-32,4, La - 0,01-32,1, Сo - 13,6, Ni - остальное, имеют высокую чувствительность давления к температуре. Это очень важно при взаимодействии с высокотемпературным ИМС в процессе работы теплового насоса. Для сравнения, на фиг.4 приведены изотермы сорбции и десорбции сплава Zr0,9Ti0,1Сr0,6Fe1,4 при температуре 30oС и 60oС. Сплав имеет больший гистерезис водородосорбирующий сплав для аккумуляторов водорода и   тепловых насосов, патент № 22144701,6 и меньшую чувствительность давления к температуре. В заявленном диапазоне составов сплава Мm-La-Ni-Co целесообразно выделить составы с Mm - 19,4-29,1 мас.%, La - 3,2-12,8 мас.%, Со - 13,6 мас.%, Ni - остальное, у которых средние давления сорбции-десорбции в диапазоне рабочих температур близки к атмосферному (среднее давление десорбции при -15oС составляет от 1,42 до 3,30 ата), а максимальное содержание водорода в соединениях составляет от 6 до 6,7 г-ат/г-моль ИMC. Эти концентрации соответствуют практически горизонтальному участку изотерм.

Увеличение концентрации РЗМ в сплаве сверх заявленного количества приводит к образованию новой фазы А2В7, а уменьшение - к появлению в структуре фазы никеля и кобальта. Увеличение или уменьшение в сплаве кобальта приводит к снижению равновесного давления на плато изотерм, уменьшению гистерезиса и водородоемкости сплавов, что отрицательно сказывается на холодопроизводительности теплового насоса.

ПРИМЕР КОНКРЕТНОГО ОСУЩЕСТВЛЕНИЯ

Сплавы заявленного состава получали сплавлением компонентов шихты, в дуговых печах с нерасходуемым электродом в атмосфере аргона. Кристаллизация сплавов, в силу специфики конструкции aппаратуры, проводят в тex же водоохлаждаемых медных изложницах, что и их плавкa. После нескольких переплавов печь вскрывали, слитки измельчали на щековой дробилке и подвергали сепарации для получения материала крупностью не более 3,0 мм. Для получения сплавов использовали мишметалл марки МЦ50ЖЗ лантан марки Ла3-0, никель марки Н-4, кобальт марки К-0. При расчете навесок, количество РЗМ бралось с 3% избытком. Так, для получения слитка состава.

Результаты испытаний приведены на фиг. 1-3.

Таким образом, заявленный состав сплава лантана и никеля с мишметаллом и кобальтом для аккумулятора водорода и низкотемпературного компонента теплового насоса обеспечивает повышение удельной холодопроизводительности (в кДж/дм3) на 21% пo сравнению со сплавом Zr0,9Ti0,1Сr0,6Fe1,4.

Класс C22C19/03 никеля

дентальный внутрикостно-поднадкостничный имплантат и способ его установки -  патент 2529472 (27.09.2014)
листовая сталь для горячего штампования и способ изготовления горячештампованной детали с использованием листовой стали для горячего штампования -  патент 2520847 (27.06.2014)
сплав на основе никеля -  патент 2518814 (10.06.2014)
электротехническая листовая сталь с неориентированным зерном и способ ее изготовления -  патент 2471013 (27.12.2012)
способ изготовления композитного материала из сплавов на основе никелида титана -  патент 2465016 (27.10.2012)
способ изготовления биаксиально текстурированной подложки из бинарного сплава на основе никеля для эпитаксиального нанесения на нее буферного и высокотемпературного сверхпроводящего слоев для ленточных сверхпроводников -  патент 2451766 (27.05.2012)
модификатор для никелевых сплавов -  патент 2447175 (10.04.2012)
способ получения ультрадисперсного порошка сплава никеля и рения -  патент 2445384 (20.03.2012)
способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе -  патент 2426810 (20.08.2011)
сплав -  патент 2426809 (20.08.2011)

Класс C22C28/00 Сплавы на основе металлов, не отнесенные к группам  5/00

активный материал отрицательного электрода на основе кремниевого сплава для электрического устройства -  патент 2509819 (20.03.2014)
припой для бесфлюсовой пайки -  патент 2498889 (20.11.2013)
способ получения алюмоскандийсодержащей лигатуры и шихта для получения алюмоскандийсодержащей лигатуры -  патент 2421537 (20.06.2011)
способ обработки контактных поверхностей разборного электрического контактного соединения -  патент 2411305 (10.02.2011)
коррозионно-стойкий сплав на основе германия -  патент 2367701 (20.09.2009)
регенеративный материал и регенератор на основе оксисульфида редкоземельного металла -  патент 2293261 (10.02.2007)
способ получения скандийсодержащей лигатуры -  патент 2261924 (10.10.2005)
металлогидридная пара сплавов для теплового насоса -  патент 2256718 (20.07.2005)
способ получения водородопоглотительных сплавов сложного состава -  патент 2219274 (20.12.2003)
металлическое изделие, имеющее покрытие, образующее термический барьер, и способ нанесения покрытия -  патент 2213797 (10.10.2003)
Наверх