датчик термоанемометра

Классы МПК:G01P5/12 с использованием изменения сопротивления нагретого проводника 
Автор(ы):, ,
Патентообладатель(и):Институт теоретической и прикладной механики СО РАН
Приоритеты:
подача заявки:
2001-06-13
публикация патента:

Изобретение относится к измерительной технике и может быть использовано для измерений характеристик газовых потоков. Датчик содержит чувствительный элемент, выполненный в виде подложки из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на внутреннюю или наружную поверхность которой нанесен чувствительный слой электропроводного материала. Техническим результатом является увеличение частотного диапазона датчика. 1 ил.
Рисунок 1

Формула изобретения

Датчик термоанемометра, содержащий трубчатый чувствительный элемент, закрепленный на державках, отличающийся тем, что чувствительный элемент выполнен в виде подложки из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на внутреннюю или наружную поверхность которой нанесен чувствительный слой электропроводного материала.

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано для измерений характеристик газовых потоков.

Известны датчики термоанемометров проволочный и пленочный [1]. Проволочные датчики изготавливают из тонких металлических проволочек с типичным диаметром 2,5-10 мкм длиной 100-200 диаметров. Такие датчики имеют большую постоянную времени (порядка миллисекунд) и недостаточное разрешение вдоль чувствительного элемента. Калибровка проволочных датчиков хорошо отработана и достаточно проста. Пленочные датчики представляют собой тонкую металлическую пленку, нанесенную на массивную подложку из изолятора. Из-за сильного влияния подложки эти датчики обладают пониженной чувствительностью, и получение количественных данных с их помощью сильно затруднено. Оба типа чувствительных элементов имеют перечисленные недостатки, ограничивающие область их применения.

Задачей изобретения является увеличение частотного диапазона датчика термоанемометра.

Поставленная задача достигается благодаря тому, что датчик термоанемометра, содержит чувствительный элемент, закрепленный на державках, и выполнен в виде подложки из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на внутреннюю или наружную поверхность которой нанесен чувствительный слой электропроводного материала.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень.

Датчик термоанемометра изображен на чертеже.

Датчик термоанемометра содержит чувствительный элемент 1, выполненный в виде подложки 3 из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на поверхность которого нанесен чувствительный слой электропроводного материала 2. Чувствительный элемент закреплен на двух державках-тоководах 4.

Датчик термоанемометра работает следующим образом.

Для измерения скорости газа чувствительный элемент 1 подключается с помощью тоководов 4 через мостовую измерительную схему (не показано) к регистрирующему устройству и нагревается электрическим током. Датчик устанавливают в потоке так, чтобы чувствительный элемент был расположен перпендикулярно направлению течения. Чувствительный элемент охлаждается потоком газа, что вызывает падение его температуры и, следовательно, уменьшение электрического сопротивления. По показаниям регистрирующего устройства с помощью предварительно полученной индивидуальной градуировочной характеристики датчика определяют скорость потока.

Трубчатая форма чувствительного элемента и выбранный материал несмотря на минимальные размеры (толщина стенки) обладают высокой прочностью. Из-за уменьшения поперечного сечения пропорционально уменьшается теплопередача вдоль чувствительного элемента, поэтому его длину можно сделать значительно меньше, чем у проволочного датчика. При этом прочность и пространственное разрешение датчика увеличивается. Кроме того, частотная характеристика предлагаемого датчика будет подобна частотной характеристике проволочного датчика, но постоянная времени при одинаковом наружном диаметре уменьшится пропорционально уменьшению площади поперечного сечения, то есть примерно в 25 раз.

При выбранной толщине стенки время, за которое выравнивается температура внешней и внутренней поверхностей трубочки при приведенной толщине стенки, составляет 10-7-10-10 с. При больших временах можно считать, что температуры внешней и внутренней поверхностей равны, поэтому чувствительный слой электропроводящего материала можно размещать как внутри, так и снаружи трубчатой подложки. Внутреннее расположение чувствительного слоя уменьшает влияние загрязнения чувствительного элемента на его характеристики.

Предлагаемый чувствительный элемент можно размещать на державках игольчатого типа (как у проволочных датчиков термоанемометра), в этом случае цилиндрическая форма чувствительного элемента позволяет применять для калибровки известные законы теплообмена, использующиеся при калибровке проволочных датчиков. Трубчатый чувствительный элемент можно размещать также на различных подложках (как у пленочных датчиков термоанемометра), в этом случае из-за малости зоны контакта чувствительного элемента с подложкой частотная характеристика датчика не изменится, вид законов теплообмена также не изменится.

Пример.

В ИТПМ СО РАН был изготовлен и использован датчик термоанемометра с чувствительным элементом из монокристалической полупроводниковой трубочки с наружным диаметром 5 мкм и толщиной стенки 0,1 мкм. На наружную поверхность трубочки был нанесен чувствительный слой электропроводного материала (золота) толщиной 0,03 мкм. Постоянная времени этого датчика в дозвуковом потоке при скорости 10 м/с равна 0,05 мс. Постоянная времени вольфрамового проволочного датчика диаметром 5 мкм в тех же условиях составила 0,5 мс. Таким образом, постоянная времени предлагаемого трубчатого датчика в 10 раз меньше, чем у проволочного, а значит частотный диапазон выше.

Предлагаемый датчик термоанемометра позволяет увеличить частотный диапазон и улучшить пространственное разрешение, используя при этом известные методы обработки полученных данных, что особенно важно при измерении турбулентных течений.

Источники информации

1. Ярин Л.П., Генкин А.Л., Кукес В.И. Термоанемометрия газовых потоков. Л.: Машиностроение, 1983, 198 с.

2. Патент РФ 2075243, МКИ G 01 P 5/12, 10.03.97 - прототип.

Класс G01P5/12 с использованием изменения сопротивления нагретого проводника 

анемометрический зонд с одной или несколькими проволочками и способ его осуществления -  патент 2524448 (27.07.2014)
термоанемометр и способ его изготовления -  патент 2451295 (20.05.2012)
термоанемометр для измерения скорости потока жидкости или газа -  патент 2450277 (10.05.2012)
способ термоанемометрических измерений -  патент 2427843 (27.08.2011)
устройство для измерения скорости движения и температуры потоков флюидов -  патент 2395684 (27.07.2010)
термоанемометрический преобразователь -  патент 2367961 (20.09.2009)
способ измерения параметров газовых и жидких сред -  патент 2354976 (10.05.2009)
способ преобразования сигнала -  патент 2351937 (10.04.2009)
способ определения скорости и температуры потока газа и устройство для его осуществления -  патент 2347227 (20.02.2009)
способ градуировки измерителя скорости потока -  патент 2333498 (10.09.2008)
Наверх