ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

оптический элемент связи с изменяющейся модой и способ его изготовления

Классы МПК:G02B6/30 для использования между волоконным и тонкопленочным прибором
G02B6/138 путем использования полимеризации
G02B6/14 модовые преобразователи
Автор(ы):, ,
Патентообладатель(и):САМСУНГ ЭЛЕКТРОНИКС КО., ЛТД. (KR)
Приоритеты:
подача заявки:
1997-11-17
публикация патента:

Изобретение используется в волоконно-оптических системах. Элемент связи с изменяющейся модой содержит первое оптическое волокно, сердцевина которого постепенно термически утолщается для изменения моды передаваемого света, второе оптическое волокно, сердцевина которого постепенно термически утолщается для изменения моды передаваемого света, элемент утолщения, который устанавливается между первым и вторым оптическими волокнами и формируется из резины, обработанной ультрафиолетовыми лучами, сечения его концов совпадают с сечением соответствующих концов первого и второго утолщенных оптических волокон после воздействия и обработки ультрафиолетовыми лучами, имеющих утолщенные концы, каждый из которых утолщается в пределах заранее заданной величины. Элемент утолщения сохраняет постоянные размеры в пределах заранее определенного расстояния между утолщенными частями первого и второго оптических волокон. Элемент утолщения размещен в элементе для прохождения канала, имеющем два конца, с которыми соединяются соответственно первое и второе оптические волокна. В элементе для прохождения канала размещено покрытие, предназначенное для заполнения элемента для прохождения канала резиной, обработанной ультрафиолетовыми лучами, выравнивания первого и второго оптических волокон и предотвращения вытекания резины из элемента для прохождения канала. В варианте устройства элемент утолщения имеет Y-форму. Обеспечено уменьшение оптических потерь. 6 с. и 11 з.п. ф-лы, 6 ил.

Область техники

Настоящее изобретение относится к оптическому элементу связи, а более точно - к оптическому элементу связи с изменяющейся модой, посредством которого осуществляется передача оптических сигналов с малыми потерями, а также к способу его изготовления.

Предшествующий уровень техники

Распространение отраженного и преломленного света зависит от угла падения света и коэффициента преломления двух сред. Поэтому в области оптической связи важное значение имеет разработка среды, в которой свет будет распространяться более успешно. В качестве среды передачи света широко используются оптические волокна. Оптическое волокно имеет сердцевину для передачи света и оболочку, имеющую отличающиеся от сердцевины свойства преломления для полного отражения света в сердцевину. Обычно для передачи света используется сердцевина, имеющая диаметр от 8 микрометров до 200 микрометров (0,2 мм). Там, где используются волокна с малым диаметром сердцевины, возникают значительные технические трудности, связанные с соединением оптических волокон или с разветвлением и объединением передаваемого света.

Оптическое волокно является пассивным элементом для разветвления или объединения оптических сигналов. Функция разветвления или объединения оптического сигнала в оптической связи может просто выполняться посредством различных фотометрических соединений аналогично разветвлению или соединению в электросвязи. Однако оптический сигнал не может быть просто реализован из-за характеристик оптического волокна, так что необходимо использование специального оптического ответвителя в качестве устройства ответвления и объединения.

До 1970 года наиболее широко использовался оптический элемент связи, для которого использовался способ соединения при помощи исчезающего поля. Сплавной элемент связи изготовлялся путем скручивания нескольких оптических волокон, которые затем обычно совместно сплавливались и растягивались. Любой диэлектрический одномодовный волновод, включая оптическое волокно, имеет исчезающее электромагнитное поле, которое уменьшается по экспоненциальному закону в направлении поверхности сердцевины. Соответственно, когда два одномодовых волновода размещаются смежно относительно друг друга, то исчезающим полем смежных сердцевин возбуждается мода волны и получается объединение оптических сигналов. Такое объединение называется объединением посредством исчезающих полей и используется в сплавном элементе связи. Однако процесс изготовления сплавного элемента связи сложен и требует много времени, он дорог и, по-видимому, цена сплавного элемента связи не уменьшается.

В качестве другого элемента используется элемент в виде волновода. Элемент связи в виде волновода разветвляет или объединяет свет посредством волновода из кварцевого стекла, сформированного на силиконовой подложке, или волновода из ионообменного стекла. Для волновода элемент связи небольших размеров может быть изготовлен в больших количествах. Однако остаются нерешенными некоторые технические проблемы, такие как потери в самом волноводе, потери в месте соединения оптического волокна, а также проблемы, связанные с усовершенствованием способа формирования волновода.

В качестве еще одного элемента связи, как описано в патенте США 5515464, используется ответвитель сердцевины, полученный в результате непосредственного объединения, в котором используется элемент удлинения, имеющий удлиненную сердцевину оптического волокна в элементе прохождения канала. Элемент удлинения позволяет удлинять путь прохождения света, передаваемого посредством сердцевины, имеющей гораздо большее сечение в центре сердцевины. Оптический элемент связи может быть спроектирован с элементом удлинения. Несколько оптических волокон, имеющих гладко срезанные концы, размещаются последовательно. После формирования элемента удлинения из отрезков оптических волокон получаются элементы удлинения с увеличивающимися областями сечения. Затем элементы удлинения соединяются и объединяются совместно вдоль определенной длины. После объединения элементов удлинения в единое целое происходит ответвление луча или объединение лучей света. Таким элементом проще связать друг с другом лучи света по сравнению со сплавным элементом связи или элементом связи в виде волновода, что позволяет проще осуществить разветвление или соединение оптических волокон. Кроме этого, имеется огромная вероятность того, что стоимость волокна будет уменьшена. Однако, так как удлинение сердцевины происходит на большом расстоянии во время удлинения сердцевины вдоль трассы прохождения канала, то элемент удлинения, сформированный посредством ультрафиолетовых лучей, начинает колебаться. Кроме этого, из-за влияния резины, имеющейся между частью оптического волокна и стенкой трассы прохождения канала и т.д., возрастают потери передаваемого луча. Характеристики такого элемента связи существенно ухудшаются, так что он не может успешно использоваться.

Краткое описание изобретения

В основу настоящего изобретения поставлена задача создания оптического элемента связи с изменяющейся модой, в котором бы не происходило потерь передаваемого оптического сигнала, путем создания нового, неколеблющегося элемента удлинения благодаря изменению моды передаваемого света независимо от длины удлинения сердцевины, удлинителя, который не испытывает влияние со стороны резины, помещенной между частью оптического волокна и стенкой элемента для прохождения канала, а также способа его производства.

Для решения упомянутой выше задачи предлагается оптический элемент связи с изменяющейся модой, содержащий первое оптическое волокно, сердцевина которого постепенно термически утолщается для изменения моды передаваемого света, второе оптическое волокно, сердцевина которого постепенно термически утолщается для изменения моды передаваемого света, элемент утолщения, который помещается между первым и вторым оптическими волокнами, формируется из резины, обработанной ультрафиолетовыми лучами, имеет концы с сечениями, равными сечениям соответствующих концов первого и второго утолщенных оптических волокон, после воздействия и обработки ультрафиолетовым лучом имеет утолщенные части, каждая из которых утолщается в пределах заранее определенного расстояния, начиная с соединительной части с первым или вторым оптическим волокном, а также среднюю часть, сохраняющую постоянные размеры в пределах заранее определенного расстояния между утолщенными частями первого и второго оптического волокна и не колеблющуюся в пределах расстояния утолщения, элемент для прохождения канала, к обоим концам которого подсоединяется соответственно первое и второе оптическое волокно и который позволяет передавать на выход принимаемый свет после помещения элемента утолщения между оптическими волокнами, расположенными с обоих его концов, а также покрытие, покрывающее элемент для прохождения канала для заполнения трассы прохождения канала резиной, обработанной ультрафиолетовыми лучами, одновременно выравнивающее первое и второе оптические волокна и предотвращающее вытекание резины наружу из элемента для прохождения канала.

Для решения указанной выше задачи разработано оптическое волокно с изменяющейся модой, содержащее первое оптическое волокно, сердцевина которого постепенно термически утолщается для изменения моды передаваемого света, второе оптическое волокно, сердцевина которого постепенно термически утолщается для изменения моды передаваемого света, третье оптическое волокно, сердцевина которого постепенно термически утолщается для изменения моды передаваемого света, элемент утолщения в форме Y, один конец которого связан с первым оптическим волокном, а другие два конца соответственно связаны со вторым и третьим волокном, который сформирован из резины, обработанной ультрафиолетовыми лучами, имеет три конца, причем сечение каждого из концов такое же, что и сечение каждого из концов первого, второго и третьего утолщенных оптических волокон после воздействия и обработки ультрафиолетовыми лучами, включая утолщенные части, каждая из которых утолщается в пределах заранее определенного расстояния, начиная с соединительной части с первым, вторым или третьим оптическим волокном, и среднюю часть в форме Y, сохраняющую постоянными свои размеры между утолщенными частями первого, второго и третьего оптических волокон, которая не колеблется в пределах расстояния утолщения, элемент для прохождения канала, к одному из концов которого подсоединяется первое оптическое волокно, а к другому концу которого подсоединяются второе и третье оптические волокна и который позволяет передавать на выход принимаемый свет после помещения элемента утолщения между оптическими волокнами, расположенными с обоих его концов, а также покрытие, покрывающее элемент для прохождения канала для заполнения его резиной, обработанной ультрафиолетовыми лучами, выравнивающее первое, второе и третье оптические волокна и предотвращающее вытекание резины из элемента прохождения канала.

Для решения указанной выше задачи разработан оптический ответвитель с изменяющейся модой, содержащий первое оптическое волокно, имеющее соединительную часть, которая постепенно термически утолщает часть сердцевины для изменения моды передаваемого света, и непрерывную часть, которая подсоединена к соединительной части и сохраняет свои размеры постоянными в пределах заранее определенного расстояния, второе оптическое волокно, имеющее соединительную часть, которая постепенно термически утолщает часть сердцевины для изменения моды передаваемого света, и непрерывную часть, которая соединена с соединительной частью и сохраняет свои размеры постоянными в пределах заранее определенного расстояния, элемент утолщения, который расположен между первым и вторым оптическими волокнами и который сформирован из резины, обработанной ультрафиолетовыми лучами, оба конца которого имеют сечения, совпадающие с сечениями соответствующих концов первого и второго утолщенного оптического волокна после воздействия и обработки ультрафиолетовым лучом, имеет утолщенные концы, каждый из которых сжимается, а затем вновь утолщается в пределах заранее определенного расстояния, начиная с соединительной части с первым и вторым оптическими волокнами, и среднюю частью, сохраняющую постоянные размеры в пределах заранее определенной длины между утолщенными частями первого и второго оптических волокон и которая не колеблется в пределах расстояния утолщения, элемент для прохождения канала, к обоим концам которого подсоединены непрерывные концы соответственно первого и второго оптических волокон и который позволяет передавать на выход принимаемый свет после заполнения элемента утолщения между оптическими волокнами, помещенными с обоих концов, а также покрытие, покрывающее элемент для прохождения канала для заполнения его резиной, обработанной ультрафиолетовыми лучами, выравнивающее первое и второе оптические волокна и предотвращающее вытекание резины из элемента для прохождения канала.

Для решения поставленной задачи разработан оптический элемент связи с изменяющейся модой, содержащий первое оптическое волокно, имеющее соединительную часть, которая постепенно термически утолщает часть сердцевины для изменения моды передаваемого света, и непрерывную часть, которая соединяется с соединительной частью и имеет постоянные размеры в пределах заранее определенной длины, второе оптическое волокно, имеющее соединительную часть, которая постепенно термически утолщает часть сердцевины для изменения моды передаваемого света, и непрерывную часть, которая соединяется с соединительной частью и сохраняет постоянными свои размеры в пределах заранее определенной длины, третье оптическое волокно, имеющее соединительную часть, которая постепенно термически утолщает часть сердцевины для изменения моды передаваемого света, и непрерывную часть, которая соединяется с соединительной частью и сохраняет постоянными свои размеры в пределах заранее определенной длины, элемент утолщения в форме Y, один конец которого соединяется с непрерывной частью первого оптического волокна, а другие два конца которого соответственно соединяются с непрерывными частями второго и третьего оптических волокон, элемент утолщения, сформированный из резины, обработанной ультрафиолетовыми лучами, три конца которого имеют то же сечение, что и концы первого, второго и третьего утолщенных оптических волокон после воздействия и обработки ультрафиолетовыми лучами, имеющий утолщенные части, каждая из которых вначале сжимается, а затем утолщается в пределах заранее определенной длины, начиная с соединительной части с первым, вторым или третьим оптическими волокнами, а также среднюю часть в форме Y, сохраняющую постоянными свои размеры между утолщенными частями, связанными с непрерывными частями первого, второго и третьего оптических волокон, и которая не колеблется в пределах расстояния утолщения, элемент для прохождения канала, к одному из концов которого подсоединяется непрерывная часть первого оптического волокна, а к второму концу которого подсоединяется непрерывная часть второго и третьего оптического волокна и который позволяет передавать на выход полученный свет после заполнения элемента утолщения между оптическими волокнами, расположенными с обоих его концов, а также покрытие, покрывающее элемент для прохождения канала для его заполнения резиной, обработанной ультрафиолетовыми лучами, выравнивающее первый, второй и третий оптические волокна и предотвращающее вытекание резины из элемента для прохождения канала.

Предпочтительно, чтобы способ изготовления оптического элемента связи с изменяющейся модой, согласно изобретению, заключался в установке оптического волокна в элементе для прохождения канала путем вдавливания оптических волокон, установке среды прохождения оптического сигнала в качестве элемента утолщения сердцевины в элементе для прохождения канала, а также покрытии покрытием части оптического волокна и элемента утолщения сердцевины.

Предпочтительно, чтобы способ изготовления оптического элемента связи с изменяющейся модой, согласно изобретению, состоял из помещения покрытия на элемент для прохождения канала, заполнения элемент для прохождения канала резиной, а также ввода оптического волокна в резину, находящуюся в элементе для прохождения канала.

Краткое описание чертежей

Преимущества настоящего изобретения поясняются описанием предпочтительных вариантов исполнения со ссылками на чертежи, на которых:

фиг. 1 изображает оптический элемент связи 1х1, который осуществляет изменение моды оптического волокна, сердцевина которого постепенно утолщается, начиная с соединительных частей, оптическое волокно помещается со стороны ближайшего конца элемента утолщения, согласно изобретению;

фиг. 2 изображает оптический элемент связи 1х2, который осуществляет изменение моды оптического волокна, сердцевина которого постепенно утолщается, начиная с соединительных частей, оптическое волокно помещается со стороны ближайшего конца элемента утолщения, согласно изобретению;

фиг. 3 изображает оптический элемент связи 1х1, который осуществляет изменение моды оптического волокна, сердцевина которого однородно утолщается в пределах всей части оптического волокна совместно с оптическим волокном, чья сердцевина постепенно утолщается, начиная с соединительных частей, оптическое волокно помещается со стороны ближайшего конца элемента утолщения, согласно изобретению;

фиг. 4 изображает оптический элемент связи 1х2, который осуществляет изменение моды оптического волокна, сердцевина которого однородным образом утолщается в пределах всей части оптического волокна совместно с оптическим волокном, чья сердцевина постепенно утолщается, начиная с соединительных частей, оптическое волокно помещается со стороны ближайшего конца элемента утолщения, согласно изобретению;

фиг. 5 изображает общий вид, показывающий структуру оптического элемента связи, с помощью которого могут быть выровнены оптические волокна, имеющие канавки в форме U или V, согласно изобретению;

фиг.6 изображает вид спереди элемента связи согласно изобретению.

Подробное описание предпочтительных вариантов воплощения изобретения

Оптический ответвитель (фиг. 1) 1х1 состоит из первого и второго оптических волокон 100 и 140, элемента утолщения 110, покрытия 120 и элемента для прохождения канала 130.

Первый и второй оптические волокна 100 и 140 постепенно термически утолщают соответствующие сердцевины для осуществления изменения моды передаваемого света.

Элемент утолщения 110 расположен между первым и вторым оптическими волокнами 100 и 140, состоит из резины, обработанной ультрафиолетовыми лучами, и не колеблется в продольном направлении. После воздействия и обработки ультрафиолетовым лучом область сечения каждого из концов оказывается равной области сечения одного из концов утолщенного первого и второго оптических волокон 100 и 140. Элемент утолщения 110 состоит из частей 112 и 114, каждая из которых утолщается в пределах заранее определенной длины утолщения (d1), начиная с части, связанной с первым или вторым оптическим волокном 100 или 140, а также из средней части 116, которая сохраняет постоянными свои размеры в пределах заранее определенной длины между элементом утолщения, связанным с первым оптическим волокном, и элементом утолщения второго оптического волокна. Внутренний коэффициент преломления элемента утолщения 110 превышает коэффициент преломления покрытия 120, покрывающего внешнюю часть элемента утолщения 110, а также коэффициент преломления прямолинейного элемента для прохождения канала 130, так что передаваемый свет удерживается и перемещается внутри.

С обоих концов элемента для прохождения канала 130 помещается соответственно первое и второе оптическое волокно 100 и 140, что позволяет передавать на выход принимаемый свет после заполнения элемента утолщения 110, расположенного между оптическими волокнами, помещенными с обоих его концов.

Покрытие 120 позволяет заполнять трассу прохождения канала 130 резиной, обработанной ультрафиолетовыми лучами, выравнивая первое и второе оптическое волокно 100 и 140, и покрывает элемент для прохождения канала 130 для предотвращения вытекания резины из элемента для прохождения канала 130.

На фиг.2 показана структура оптического ответвителя 1х2 в соответствии с настоящим изобретением, который осуществляет изменение моды после помещения элемента утолщения оптического волокна с сердцевиной со стороны ближайшего конца, постепенно утолщающейся от соединительных частей. Оптический ответвитель 1х2 состоит из первого, второго и третьего оптических волокон 200, 210 и 220, из элемента утолщения 230, элемента для прохождения канала 240 и покрытия 250.

Сердцевина первого, второго и третьего оптических волокон 200, 210 и 220 постепенно термически утолщается для изменения моды передаваемого света.

Элемент утолщения 230 имеет форму Y и один из его концов связан с первым оптическим волокном 200, а другие два конца связаны с вторым и третьим оптическими волокнами 210 и 220 соответственно. Элемент утолщения 230 состоит из резины, обработанной ультрафиолетовыми лучами. После воздействия и обработки ультрафиолетовыми лучами сечения соответствующих концов элемента утолщения 230 становятся равными сечениям соответствующих концов первого, второго и третьего оптических волокон 200, 210 и 220. Элемент утолщается в пределах заранее определенного расстояния утолщения (d2), начиная с части, связанной с первым, вторым или третьим оптическими волокнами 200, 210 или 220, и имеет среднюю часть 238, имеющую постоянные размеры между частями утолщения 232, 234 и 236, соответствующим образом связанными с первым, вторым и третьим оптическими волокнами 200, 210 и 220. Элемент утолщения 230 не колеблется в пределах расстояния утолщения (d2). Кроме этого, элемент утолщения 230 имеет форму, которая сохраняется после постепенного удлинения в пределах расстояния утолщения (d2) и достижения стенки элемента для прохождения канала в форме Y 240. Внутренний коэффициент преломления этого элемента утолщения 230 превышает коэффициент преломления покрытия 250, покрывающего внешнюю часть элемента утолщения 230, а также коэффициент преломления элемента для прохождения канала 240 в форме Y.

К одному из концов элемента для прохождения канала 240 подсоединяется первое оптическое волокно 200, а к другому концу подсоединяются второе и третье оптические волокна 210 и 220. После установки элемента утолщения между оптическими волокнами, расположенными с каждого из концов элемента для прохождения канала 240, последний позволяет передавать свет на выход. Покрытие 250, покрывающее элемент для прохождения канала 240, позволяет заполнять элемент для прохождения канала 240 резиной, обработанной ультрафиолетовыми лучами, чтобы она не вытекала из элемента для прохождения канала 240, одновременно выравнивая первое, второе и третье оптические волокна 200, 210 и 220.

На фиг. 3 показана структура оптического элемента связи 1х1 в соответствии с настоящим изобретением, который позволяет осуществить изменение моды, причем оптическое волокно, сердцевина которого однородным образом утолщается вдоль всей части оптического волокна, соединяется с оптическим волокном, сердцевина которого постепенно утолщается, начиная с соединительной части. Оптическое волокно помещают со стороны ближайшего конца элемента утолщения. Оптический элемент связи 1х1 имеет первое и второе оптические волокна 300 и 340, элемент утолщения 310, элемент для прохождения канала 320 и покрытие 330.

Первое и второе оптические волокна 300 и 340 имеют соединительные части 302 и 342, которые постепенно термически утолщают части сердцевины для осуществления изменения моды передаваемого света, а также непрерывные части 304 и 344, которые связаны соответственно с соединительными частями 302 и 342 и сохраняют постоянные размеры в пределах заранее определенного расстояния.

Элемент утолщения 310 расположен между первым и вторым оптическими волокнами 300 и 340 и состоит из резины, обработанной ультрафиолетовыми лучами. После воздействия и обработки ультрафиолетовыми лучами сечения обоих концов совпадают с сечением соединительных частей 302 и 342 первого и второго оптических волокон 300 и 340. Элемент утолщения 310 имеет части утолщения 312 и 314, каждая из которых сжимается, а затем утолщается в пределах заранее определенного расстояния утолщения (d3), начиная с части, связанной с первым или вторым оптическим волокном 300 или 342, а также среднюю часть 316, которая устанавливается между частями утолщения 312 и 314, связанными с первым и вторым оптическими волокнами 300 и 340, и сохраняет постоянные размеры во всей длине утолщения (d3). Элемент утолщения 310 не колеблется в пределах расстояния утолщения (d3). Кроме этого, элемент утолщения 310 имеет форму, которая сохраняется неизменной после сжатия, постепенного утолщения в пределах заранее определенного расстояния и достижения стенки прямолинейной трассы прохождения канала 320. Для удержания внутри передаваемого света внутренний коэффициент преломления элемента утолщения 310 превышает коэффициент преломления покрытия 330, покрывающего внешнюю часть элемента утолщения 310, а также коэффициент преломления элемента прохождения канала 320.

К обоим концам элемента для прохождения канала 320 подсоединяются удлиняющиеся части 304 и 344 соответственно первого и второго оптического волокна 300 и 340, что позволяет передавать на выход принимаемый свет после установки элемента утолщения 310 между оптическими волокнами, расположенными с обоих концов. Покрытие покрывает элемент для прохождения канала 320 для заполнения его резиной, обработанной ультрафиолетовыми лучами таким образом, чтобы она не вытекала из элемента для прохождения канала 320, одновременно выравнивая первое и второе оптические волокна.

На фиг. 4 показана структура оптического элемента связи 1х2 в соответствии с настоящим изобретением, который осуществляет изменение моды, причем оптическое волокно, чья сердцевина однородным образом утолщается вдоль всей части оптического волокна, соединено с оптическим волокном, сердцевина которого постепенно утолщается, начиная с соединительных частей. Оптическое волокно располагается со стороны ближайшего конца элемента утолщения. Оптический элемент связи 1х2 состоит из первого, второго и третьего оптических волокон 400, 440 и 450, элемента утолщения 410, элемента для прохождения канала 420 и покрытия 430.

Первое, второе и третье оптические волокна 400, 440 и 450 имеют соединительные части 402, 442 и 452, которые постепенно термически утолщают часть сердцевины для изменения моды передаваемого света, а также непрерывные части 404, 444 и 454, которые связаны с соединительными частями 402, 442 и 452 соответственно и сохраняют постоянные размеры в пределах заранее определенного расстояния.

Элемент утолщения 410 имеет форму Y и один из его концов связан с непрерывной частью 404 первого оптического волокна, а другие два конца соответственно соединены с непрерывными частями 444 и 454 второго и третьего оптических волокон. Кроме этого, элемент утолщения 410 состоит из резины, обработанной ультрафиолетовыми лучами. После воздействия и обработки ультрафиолетовым лучом области сечения соответствующих трех концов элемента утолщения 410 становятся такими же, как и области сечения соответствующих концов первого, второго и третьего утолщенных оптических волокон 400, 440 и 450. Элемент утолщения 410 состоит из удлиненных частей 412, 414 и 416, каждая из которых сжимается, а затем утолщается в пределах заранее определенного расстояния утолщения (d4), начиная с части, соединенной с первым, вторым или третьим оптическим волокном 400, 440 или 450, а также из средней части 418, имеющей форму Y с постоянными размерами вдоль утолщенных частей 412, 414 и 416, соответственно связанных с непрерывными частями 404, 444 и 454 первого, второго и третьего оптических волокон. Элемент утолщения 410 не колеблется в пределах интервала утолщения (d4). Кроме этого, элемент утолщения 410 сжимается в пределах заранее определенного расстояния и затем постепенно утолщается и сохраняет свою форму после достижения стенки элемента для прохождения канала в форме Y 420. Для удержания внутри передаваемого света коэффициент преломления элемента утолщения 410 превышает коэффициент преломления покрытия 430, покрывающего внешнюю часть элемента утолщения 410, и превышает коэффициент преломления элемента для прохождения канала 420, имеющего форму Y.

Один из концов элемента для прохождения канала соединен с непрерывной частью 404 первого оптического волокна, а другой конец связан с непрерывными частями 444 и 454 второго и третьего оптических волокон. Элемент для прохождения канала 420 позволяет передать на выход принимаемый свет после установки элемента утолщения 410 между оптическими волокнами, расположенными с обоих концов. Покрытие 430 покрывает элемент для прохождения канала 420 для заполнения его резиной, обработанной ультрафиолетовыми лучами таким образом, чтобы резина не вытекала из элемента для прохождения канала 420, одновременно выравнивая первое, второе и третье оптические волокна 400, 440 и 450.

На фиг.5 показана структура оптического элемента связи, имеющего канавки в форме U или V в соответствии с настоящим изобретением, посредством которых оптические волокна могут быть выровнены. Изготовление оптических волокон с канавками в форме U или V 510 позволяет выравнивать оптическое волокно 500, когда оно имеет утолщенную сердцевину, помещается в мономер остатка в элемент для прохождения канала 530 и устанавливается в элементе для прохождения канала. На фиг.6 показан вид спереди.

Кроме этого, элементы утолщения 110, 230, 310 и 410 могут быть сформированы из материала, имеющего коэффициент преломления, находящийся в интервале от 1,52 до 1,60. Сердцевина может вновь утолщаться после предварительной обработки сердцевины перед утолщением. Кроме этого, во время воздействия ультрафиолетового луча на оптическое волокно, расположенное в передней части элемента утолщения для получения полимеризированного элемента утолщения, полимеризированный элемент утолщения может быть изготовлен путем изменения угла падения ультрафиолетового луча. Более того, элементы утолщения 110, 230, 310 и 410 могут иметь круглое сечение или прямоугольное сечение.

Элементы для прохождения канала 130, 240, 320 и 420 могут формироваться из резины, состоящей из одного компонента, из нескольких компонентов или из составного компонента, обладающего перестраиваемым коэффициентом преломления, находящимся в интервале от 0,01 до 0,002, который не превышает коэффициенты преломления элементов утолщения 110, 230, 310 и 410. Кроме этого, элементы для прохождения канала 130, 240, 320 и 420 могут иметь круглое или четырехугольное сечение.

Покрытие 120, 250, 330 и 430 может формироваться из резины, состоящей из единственного компонента, из совокупности компонентов или из составного компонента, имеющего перестраиваемый коэффициент преломления, находящийся в интервале от 0,02 до 0,002, не превышающий коэффициент преломления элементов утолщения 110, 230, 310 и 410. Оптические волокна 100, 140, 200, 210, 220, 300, 340, 400, 440 и 450 могут устанавливаться в элементы для прохождения канала 130, 240, 320 и 420 путем защелкивания/вдавливания для фиксации оптического волокна в элементе для прохождения канала путем надавливания на оптическое волокно. Кроме этого, оптические волокна 100, 140, 200, 210, 220, 300, 340, 400, 440 и 450 могут устанавливаться в элемент для прохождения канала 130, 240, 320 и 420 следующим образом. Элемент для прохождения канала 130, 240, 320 и 420 с покрытиями 120, 250, 330 и 430 заполняется резиной, а оптические волокна затем помещаются в резину элемента для прохождения канала 130, 240, 320 и 420. Более того, когда оптические волокна 100, 140, 200, 210, 220, 300, 340, 400, 440 и 450 помещаются в резину элемента для прохождения канала 130, 240, 320 и 420, то для самостоятельного выравнивания оптических волокон 100, 140, 200, 210, 220, 300, 340, 400, 440 и 450 могут использоваться канавки в форме U или V.

Рассмотрим работу оптического элемента связи, показанного на фиг.1.

Передаваемый свет проходит через оптическое волокно 100, сердцевина которого была термически утолщена и постепенно расширена в соединительных частях. Оптическое волокно спроектировано таким образом, чтобы можно было изменять моду, сохраняя основную моду. Волокно устанавливается в элемент утолщения 110, полимеризированный ультрафиолетовым излучением. После постепенного утолщения сердцевины оптического волокна 100 передаваемый свет изменяется, сохраняя основную моду путем минимизации угла отклонения и уменьшения интервала утолщения сердцевины. Измененная мода, введенная в элемент утолщения 110, распространяется в элементе утолщения 110 в условиях полного внутреннего отражения света, вводится в оптическое волокно 140 с утолщенной частью, расположенной напротив оптического волокна 140, а затем передается на выход путем восстановления исходного состояния.

Рассмотрим работу оптического элемента связи, показанного на фиг.2.

Ветвление А в В и С или соединение В и С в А осуществляется благодаря модовой структуре поля, когда электромагнитные поля оптических сигналов, передаваемых через элемент утолщения 230 трассы прохождения канала в форме Y 240, объединяются совместно. Вначале будет рассмотрено ветвление А в В и С. Свет, передаваемый от А, проходит через оптическое волокно 200, сердцевина которого постепенно термически была утолщена для утолщения соединительной части оптического волокна, спроектированного таким образом, чтобы мода могла изменяться, сохраняя основную моду, и которое затем вводится в элемент утолщения 230, полимеризированный ультрафиолетовым излучением. По мере утолщения сердцевины оптического волокна 200 передаваемый свет изменяется, сохраняя основную моду путем минимизации угла отклонения и уменьшения расстояния утолщения сердцевины. Измененная мода вводится в элемент утолщения 230, распространяется в элементе утолщения 230 в условиях полного внутреннего отражения света и вводится в оптические волокна 210 и 220. Утолщенная часть этих оптических волокон находится напротив оптических волокон 210 и 220, причем оптическая мощность разветвляется в равных частях в части ветвления элемента утолщения 230 элемента для прохождения канала в форме Y 240. Затем измененная мода возвращается в исходное состояние и передается как В и С.

Далее будет рассмотрено соединение В и С с А.

Свет, передаваемый от В и С, проходит через оптические волокна 210 и 220, сердцевина которых постепенно термически утолщается в соединительных частях оптического волокна, спроектированного таким образом, что мода может изменяться, сохраняя основную моду, которое затем вводится в элемент утолщения 230, полимеризированный ультрафиолетовым излучением. Свет изменяется, сохраняя основную моду, вводится в элемент утолщения 230 и перемещается в элементе утолщения 230 в условиях полного внутреннего отражения света, а затем вводится в оптическое волокно 200, оптическое волокно своей утолщенной частью устанавливается напротив оптического волокна 200, причем поля моды структурно объединяются в соединительной части элемента утолщения 230 элемента для прохождения канала 240 в форме Y. В это время измененная мода возвращается в исходное состояние для передачи на выход как А.

Рассмотрим работу оптического волокна, показанного на фиг.3.

Передаваемый свет, который изменяется, сохраняя основную моду путем минимизации угла отклонения сердцевины и уменьшения расстояния его утолщения по мере постепенного утолщения сердцевины оптического волокна 300, проходит через оптическое волокно 340, однородным образом расширенное по всей части оптического волокна во время расширения сердцевины. Затем передаваемый свет вводится в элемент утолщения 310, полимеризированный ультрафиолетовым излучением. Мода света, введенного в элемент утолщения 310, вновь изменяется. Область сечения элемента утолщения 310 такая же, что и область сечения сердцевины непрерывной части 304 оптического волокна в части, соединяющейся с непрерывной частью 304. Однако область сечения сжимается в пределах заранее определенного расстояния и постепенно вытягивается. Затем элемент утолщения 310 сохраняет увеличенные размеры после достижения стенки прямолинейного элемента для прохождения канала 320. В это время введенный свет перемещается внутри элемента утолщения 310 в условиях полного внутреннего отражения света путем минимизации угла отклонения сердцевины и уменьшения длины его утолщения. Введенный свет вводится в оптическое волокно 340, сердцевина которого утолщается однородным образом в непрерывной части 344, соединяющейся с непрерывной частью 304. Таким образом, измененная мода вновь восстанавливается и еще раз восстанавливается оптическим волокном 340 с утолщенной сердцевиной, а затем передается на выход.

В оптическом элементе связи (фиг.4) ветвление D в Е и F или соединение Е и F с D осуществляется благодаря модальной структуре поля, когда электромагнитные поля оптических сигналов, проходящих через элемент утолщения 410 трассы прохождения канала 420 в форме Y, объединяются совместно. Вначале будет описано ветвление D в Е и F.

Свет передается от D через соединительную часть 402 оптического волокна 400, имеющего термически утолщенную сердцевину, которая постепенно утолщается в соединительных частях. Оптическое волокно спроектировано таким образом, что мода может изменяться, сохраняя основную моду. Затем передаваемый свет проходит через оптическое волокно 400, однородным образом утолщенное в непрерывной части 404 по мере расширения сердцевины. После этого передаваемый свет вводится в элемент утолщения 410, полимеризированный ультрафиолетовым излучением. Передаваемый свет изменяется, сохраняя основную моду путем минимизации угла отклонения сердцевины и уменьшения расстояния ее утолщения по мере постепенного утолщения сердцевины оптического волокна 400. Измененная мода распространяется по оптическому волокну 400, сердцевина которого однородным образом утолщается в непрерывной части 404 оптического волокна 400, и затем вводится в элемент утолщения 410. Мода света, введенного в элемент утолщения 410, вновь изменяется, сохраняя основную моду. Сечение элемента утолщения 410 такое же, что и сечение сердцевины удлиненной части 404 оптического волокна 400 в части соединения с непрерывной частью 404. Однако его область сечения сжимается в пределах заранее определенного расстояния и постепенно утолщается. Затем элемент утолщения 410 сохраняет увеличенные размеры после достижения стенки элемента для прохождения канала 420 в форме Y. В это время введенный свет перемещается внутри элемента утолщения 410 в условиях полного внутреннего отражения света путем минимизации угла отклонения сердцевины и уменьшения расстояния ее утолщения. Оптическая мощность разветвляется в равных частях в разветвляющейся части элемента утолщения 410 трассы прохождения канала 420 в форме Y. В таком состоянии введенный свет вводится в утолщенные части 444 и 454 оптических волокон 440 и 450, сердцевины которых были однородным образом расширены в пределах всей части оптических волокон 440 и 450, помещенных напротив оптического волокна 400. Таким образом, измененная мода вновь восстанавливается и повторно восстанавливается соединительными частями 442 и 452 оптических волокон 440 и 450 с утолщенными сердцевинами, а затем передается на выход как Е и F.

Теперь будет рассмотрена связь Е и F с D. Свет, передаваемый от Е и F проходит через оптические волокна 440 и 450, сердцевины которых утолщаются однородным образом в непрерывных частях 444 и 454 оптических волокон посредством соединительных частей 442 и 452 оптического волокна с утолщенной сердцевиной в соединительных частях. Оптическое волокно, спроектированное таким образом, чтобы мода могла изменяться, сохраняя основную моду, вводится затем в элемент утолщения 410. Свет, введенный в элемент утолщения 410, полимеризированный ультрафиолетовым излучением, вновь изменяется, сохраняя основную моду, и распространяется внутри элемента утолщения 410 в условиях полного внутреннего отражения света. Как только модальные поля структурно объединяются в соединительной части элемента утолщения 410 трассы прохождения канала 420 в форме Y, введенный свет вводится в соединительную часть 402 оптического волокна, сердцевина которого однородным образом утолщается в непрерывной части 404 оптического волокна, установленного напротив непрерывных частей 444 и 454 оптических волокон. В это время измененная мода впервые возвращается в исходное состояние непрерывной частью 404 оптического волокна. Затем мода повторно восстанавливается соединительной частью 402 оптического волокна, которая осуществляет частичное утолщение сердцевины оптического волокна 400 и таким образом передается на выход как D.

В оптических элементах связи, изображенных на фиг.5 и 6, используется канавка 510 в форме U или V во время установки оптического волокна 500 в заполненный резиной прямолинейный элемент для прохождения канала 530 в форме Y, для их размещения в прямолинейном элементе для прохождения канала 530 в форме Y. Поэтому оптическое волокно может быть закреплено в элементе для прохождения канала 530. Кроме этого, возрастает точность связи между сердцевинами оптических волокон, тем самым уменьшая потери на излучение света, вызванные несоответствием сердцевин оптических волокон.

Как описывалось выше, в отличие от ранее известного способа, в соответствии с настоящим изобретением, используется длинный интервал утолщения сердцевины во время расширения сердцевины в элементе для прохождения канала. Поэтому исключается колебание элемента утолщения, сформированного ультрафиолетовыми лучами. Кроме этого, существенно уменьшаются потери передаваемого света, возникающие из-за влияния резины, помещенной между сечением оптического волокна и стенкой элемента для прохождения канала. Более того, использование канавок в форме U или V позволяет самостоятельно выравнивать оптические волокна, благодаря чему уменьшаются потери, вызванные излучениями.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Оптический элемент связи с изменяющейся модой для соединения между собой двух оптических волокон, содержащий: первое оптическое волокно, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света; второе оптическое волокно, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света; элемент утолщения, который размещен между первым и вторым оптическими волокнами, и который сформирован из резины, обработанной ультрафиолетовыми лучами, имеет два конца, области сечения которых равны областям сечения соответствующих концов сердцевин первого и второго оптических волокон после обработки ультрафиолетовым лучом элемента утолщения и который включает утолщенные часта, каждая из которых является утолщенной в пределах заданной величины, начиная с указанного конца первого и второго оптических волокон, а также среднюю часть, размеры которой сохраняются постоянными в заранее определенном интервале между указанными утолщенными частями и не колеблются в пределах заданной величины; элемент для прохождения канала, к двум концам которого соответствующим образом подсоединены первое и второе оптические волокна, для обеспечения выхода передаваемого света после размещения элемента утолщения в элемент для прохождения канала; и покрытие, охватывающее элемент для прохождения канала и предназначенное для заполнения элемента для прохождения канала резиной, обработанной ультрафиолетовыми лучами, выравнивания первого и второго оптических волокон и предотвращения вытекания резины из элемента для прохождения канала.

2. Оптический элемент связи по п.1, отличающийся тем, что разность преломляющей способности между каждым постепенно утолщенным концом указанных первого и второго оптических волокон и указанным элементом утолщения является минимальной.

3. Оптический элемент связи по п.1, отличающийся тем, что элемент утолщения сформирован из материала, имеющего коэффициент преломления, находящийся в интервале от 1,52 до 1,60.

4. Оптический элемент связи по п.1, отличающийся тем, что элемент утолщения расширяет указанную сердцевину указанного первого и второго волокна после ее обработки.

5. Оптический элемент связи по п.1, отличающийся тем, что элемент утолщения является полимеризованным посредством ультрафиолетового луча, падающего на указанное первое или второе оптическое волокно, при этом угол падения ультрафиолетового луча изменяется.

6. Оптический элемент связи по любому из пп.3-5, отличающийся тем, что элемент утолщения имеет круглое сечение.

7. Оптический элемент связи по любому из пп.3-5, отличающийся тем, что элемент утолщения имеет прямоугольное сечение.

8. Оптический элемент связи по п.1, отличающийся тем, что элемент для прохождения канала формируется из резины с единственным компонентом, с совокупностью компонентов или с составным компонентом, который имеет регулируемый коэффициент преломления, находящийся в интервале от 0,01 до 0,002, не превышающий коэффициент преломления элемента утолщения.

9. Оптический элемент связи по п.8, отличающийся тем, что элемент для прохождения канала имеет круглое сечение.

10. Оптический элемент связи по п.8, отличающийся тем, что элемент для прохождения канала имеет прямоугольное сечение.

11. Оптический элемент связи по п.1, отличающийся тем, что он формируется из резины с единственной компонентой, с совокупностью компонентов или составной компонентой, имеющей регулируемый коэффициент преломления, находящийся в интервале от 0,01 до 0,002, не превышающий коэффициент преломления элемента утолщения.

12. Оптический элемент связи по п.1, отличающийся тем, что имеет канавки в форме U или V, образованные в элементе для прохождения канала для установки оптического волокна, позволяющие выравнивать оптическое волокно при помещении в резину, имеющуюся в элементе для прохождения канала.

13. Способ изготовления оптического элемента связи с изменяющейся модой, заключающийся в том, что размещают оптическое волокно в элементе для прохождения канала; помещают среду для передачи оптического сигнала, в качестве элемента расширения сердцевины, имеющего утолщенные части, которые утолщаются в пределах заданной величины, начиная с соединительной части с оптическим волокном и среднюю часть, размеры которой остаются постоянными, в элемент для прохождения канала; покрывают часть оптического волокна и элемента расширения сердцевины покрытием, причем указанный этап установки оптического волокна в элемент для прохождения канала выполняют путем фиксации оптического волокна в элементе для прохождения канала путем вдавливания оптического волокна.

14. Способ изготовления оптического элемента связи с изменяющейся модой содержащего: первое оптическое волокно, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света; второе оптическое волокно, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света; элемент утолщения, который размещен между первым и вторым оптическими волокнами, и который сформирован из резины, обработанной ультрафиолетовыми лучами, имеет два конца, области сечения которых равны областям сечения соответствующих концов сердцевин первого и второго оптических волокон после при обработке ультрафиолетовым лучом элемента утолщения и который включает утолщенные части, каждая из которых является утолщенной в пределах заданной величины, начиная с указанного конца первого и второго оптических волокон, а также среднюю часть, размеры которой сохраняются постоянными в заранее определенном интервале между указанными утолщенными частями и не колеблются в пределах заданной величины; элемент для прохождения канала, к двум концам которого соответствующим образом подсоединены первое и второе оптические волокна, для обеспечения выхода передаваемого света после размещения элемента утолщения в элемент для прохождения канала; и покрытие, охватывающее элемент для прохождения канала и предназначенное для заполнения элемента для прохождения канала резиной, обработанной ультрафиолетовыми лучами, выравнивания первого и второго оптических волокон и предотвращения вытекания резины из элемента для прохождения канала, при этом способ включает следующие этапы: размещают покрытие на элементе для прохождения канала; заполняют элемент для прохождения канала резиной; вводят указанные первое и второе оптические волокна в резину, имеющуюся в элементе для прохождения канала.

15. Оптический элемент связи с изменяющейся модой, в котором оптический сигнал разветвляется или в котором соединяются разветвленные сигналы, содержащий: первое оптическое волокно, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света; второе оптическое волокно, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света; третье оптическое волокно, сердцевина которого является постепенно расширенной термическим путем для изменения передаваемого света; элемент утолщения в форме Y, один конец которого соединен с первым оптическим волокном, а другие два конца соединены соответственно со вторым и третьим оптическими волокнами, и который сформирован из резины, обработанной ультрафиолетовыми лучами, при этом элемент имеет три конца и сечения этих концов совпадают с сечениями первого, второго и третьего утолщенных оптических волокон после воздействия и обработки ультрафиолетовым лучом, и включает утолщенные части, являющиеся утолщенными в пределах заранее определенного расстояния утолщения, начиная с каждого указанного конца указанного первого, второго и третьего оптического волокна и средняя часть в форме Y сохраняет постоянные размеры в предварительно определенном интервале между утолщенными частями первого, второго и третьего оптических волокон, и не колеблется в указанном предварительно определенном интервале; элемент для прохождения канала, один конец которого связан с первым оптическим волокном, а другой конец связан со вторым и третьим оптическими волокнами для обеспечения выхода передаваемого света после размещения указанного элемента утолщения в указанный элемент для прохождения канала; покрытие, охватывающее элемент для прохождения канала и предназначенное для заполнения элемента для прохождения канала резиной, обработанной ультрафиолетовыми лучами, и выравнивания первого, второго и третьего оптических волокон и предотвращения вытекания резины из элемента для прохождения канала.

16. Оптический элемент связи с изменяющейся модой, отличающийся тем, что содержит: первое оптическое волокно, имеющее соединительную часть, сердцевина которой является постепенно расширенной термическим путем для изменения моды передаваемого света и непрерывную часть, которая соединяется с соединительной частью и имеет постоянные размеры в пределах предварительно определенного расстояния; второе оптическое волокно, имеющее соединительную часть, сердцевина которой является постепенно расширенной термическим путем для изменения моды передаваемого света и непрерывную часть, которая связана с соединительной частью и имеет постоянные размеры в пределах предварительно определенного расстояния, элемент утолщения, расположенный между первым и вторым оптическими волокнами, сформированный из резины, обработанной ультрафиолетовыми лучами, имеющий два конца, область сечения обеих концов которого равна области сечения соответствующих концов первого и второго оптических волокон с расширенной сердцевиной, после воздействия и обработки ультрафиолетовым лучом элемента утолщения, причем элемент утолщения имеет утолщенные части, каждая из которых сжимается, а затем расширяется в пределах заданной величины, начиная с каждого указанного конца указанных первого или второго оптического волокна, а также среднюю часть, размеры которой сохраняются постоянными в предварительно определенном интервале между указанными утолщенными частями первого и второго оптических волокон и не колеблются в пределах предварительно определенного интервала; элемент для прохождения канала, имеющий два конца, соединенные с соответствующими непрерывными частями первого и второго оптических волокон, для обеспечения выхода передаваемого свет после размещения элемента утолщения в элемент для прохождения канала, и покрытие, охватывающее элемент для прохождения канала и предназначенное для заполнения элемента для прохождения канала резиной, обработанной ультрафиолетовыми лучами, выравнивания первого и второго оптического волокна и предотвращения вытекания резины из элемента для прохождения канала.

17. Оптический элемент связи с изменяющейся модой, в котором оптический сигнал разветвляется или соединяются разветвленные оптические сигналы, содержащий: первое оптическое волокно, имеющее соединительную часть, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света и непрерывную часть, которая соединяется с соединительной частью и имеет постоянные размеры в пределах предварительно определенного расстояния; второе оптическое волокно, имеющее соединительную часть, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света и непрерывную часть, которая связана с соединительной частью и имеет постоянные размеры в пределах предварительно определенного расстояния; третье оптическое волокно, имеющее соединительную часть, сердцевина которого является постепенно расширенной термическим путем для изменения моды передаваемого света и непрерывную часть, которая соединена с соединительной частью и имеет постоянные размеры в пределах предварительно определенного расстояния; элемент утолщения в форме Y, один конец которого соединен с непрерывной частью первого оптического волокна, а другие два конца соединены соответственно с непрерывными частями второго и третьего оптических волокон, и который сформирован из резины, обработанной ультрафиолетовыми лучами, при этом элемент утолщения имеет три конца и сечения этих концов совпадают с сечениями концов первого, второго и третьего оптических волокон с расширенной сердцевиной после воздействия и обработки ультрафиолетовым лучом элемента утолщения, и включающий утолщенные части, которые вначале сжимаются, а затем расширяются в пределах предварительно заданного расширения, начиная с каждого указанного конца указанного первого, второго и третьего оптического волокна, и средняя часть в форме Y сохраняет постоянные размеры в предварительно определенном интервале между утолщенными частями, соединенными с непрерывными частями первого, второго и третьего оптических волокон, и не колеблется в пределах этой величины; элемент для прохождения канала, один конец которого соединен с непрерывной частью первого оптического волокна, а другой конец соединен с непрерывными частями второго и третьего оптических волокон для обеспечения выхода передаваемого света после размещения указанного элемента утолщения в указанный элемент для прохождения канала; покрытие, охватывающее элемент для прохождения канала и предназначенное для заполнения элемента для прохождения канала резиной, обработанной ультрафиолетовыми лучами, и выравнивания первого, второго и третьего оптических волокон и предотвращения вытекания резины из элемента для прохождения канала.

Патентный поиск по классам МПК-8:

Класс G02B6/30 для использования между волоконным и тонкопленочным прибором

Класс G02B6/138 путем использования полимеризации

Класс G02B6/14 модовые преобразователи

Патенты РФ в классе G02B6/14:
устройство возмущения многомодового оптического волокна -  патент 2468400 (27.11.2012)
способ компенсации дифференциальной модовой задержки многомодовой волоконно-оптической линии в режиме передачи маломодовых сигналов -  патент 2468399 (27.11.2012)
способ уменьшения дифференциальной модовой задержки многомодового оптического волокна -  патент 2458370 (10.08.2012)
способ идентификации многомодового оптического волокна с повышенной дифференциальной модовой задержкой -  патент 2400783 (27.09.2010)
способ компенсации дифференциальной модовой задержки многомодовой волоконно-оптической линии передачи -  патент 2334257 (20.09.2008)
способ спектрально-селективного преобразования мод оптического излучения в волноводе и устройство для его реализации -  патент 2234723 (20.08.2004)
фильтр с температурной компенсацией на основе волоконно- оптической дифракционной решетки с большим периодом и оптическое волокно -  патент 2212043 (10.09.2003)
оптико-акустический частотный фильтр -  патент 2176411 (27.11.2001)
фильтр на основе волоконно-оптических дифракционных решеток с большими периодами -  патент 2173866 (20.09.2001)
акустооптическое волноводное устройство для селекции длин волн и способ его изготовления -  патент 2169936 (27.06.2001)


Наверх