многосопловый струйный аппарат

Классы МПК:F04F5/24 используемая для перемещения жидкостей, например содержащих твердые вещества, или жидкостей, смешанных с газами или парами 
F04F5/46 размещение сопел 
Автор(ы):, ,
Патентообладатель(и):Пензенский технологический институт
Приоритеты:
подача заявки:
2001-03-29
публикация патента:

Изобретение относится к струйным аппаратам, применяемым в системах отопления и горячего водоснабжения зданий. Внутри корпуса смонтированы центральное и периферийные сопла, образованные в форме кольцевых щелей стенками патрубков для подвода активной среды и стенками камер смешения, причем периферийные патрубки подвода пассивной среды, а соответственно, и периферийные сопла установлены по окружности эквидистантно центральному патрубку. При этом площадь выходного сечения центрального патрубка подвода пассивной среды SЦП определяется из соотношения SЦП/n.SПП = 0,75...1, где SПП - площадь выходного сечения периферийного патрубка; n - число периферийных патрубков. Причем площадь выходного сечения периферийного патрубка ограничивается соотношением ПП/SЦП = 0,12...0,2. Технический результат - улучшение процесса теплообмена. 2 з.п. ф-лы, 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

1. Многосопловый струйный аппарат, содержащий корпус с приемными камерами, патрубки подвода активной среды, размещенные в корпусе сопла, отличающийся тем, что внутри корпуса смонтированы центральное и периферийные сопла, причем центральное сопло образовано в виде кольцевой щели стенкой центрального патрубка для подвода пассивной среды и стенкой камеры смешения, а периферийные сопла в виде кольцевых щелей образованы стенками патрубков для подвода пассивной среды, установленными в торцевой и промежуточной стенках, перпендикулярных оси аппарата, по окружности эквидистантно центральному патрубку, и стенками камер смешения, закрепленными в кольцевой перегородке корпуса аппарата.

2. Аппарат по п. 1, отличающийся тем, что площадь выходного сечения центрального патрубка подвода пассивной среды SЦП определяется из соотношения

SЦП/n.SПП = 0,75. . . 1,

где SПП - площадь выходного сечения периферийного патрубка;

n - число периферийных патрубков.

3. Аппарат по пп. 1 и 2, отличающийся тем, что площадь выходного сечения периферийного патрубка ограничивается соотношением

SПП/SЦП = 0,12. . . 0,2.

Описание изобретения к патенту

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам, используемым в системах отопления и горячего водоснабжения зданий.

Известны устройства для смешения и теплообмена активной (пар) и пассивной (вода) сред путем эжекции и преобразования кинетической энергии смеси сред в потенциальную энергию избыточного давления, необходимого для транспортирования потока смеси сред потребителю (напр. авт. свид. 1344956, М. кл. F 04 F 5/02 "Струйный аппарат", 1987; авт.свид. 1255764, М. кл. F 04 F 5/02 "Многосопловый струйный аппарат", 1986; трансзвуковой струйный аппарат "Фисоник" - информационно-рекламный проспект 000 фирмы "Робби", М. Шмитовский проезд, д. 17, интернет-магазин: WWW.ROBBI.RU, 2000 г.).

Недостатком известных устройств является ограниченность объемов перекачиваемой среды, сложность регулирования и управления выходными параметрами (температура, давление, расход и др.) потока смеси сред (горячей воды).

Наиболее близким заявляемому является устройство по авт. свид. 1244392, М. кл. F 04 F 5/02 "Многосопловый струйный насос", 1986. Насос обеспечивает транспортирование смеси сред посредством центрального и периферийного сопел и позволяет регулировать подачу активной среды в периферийное сопло при помощи клапана и кольцевой диафрагмы, а тем самым управлять режимом работы струйного насоса в определенных пределах.

Однако при больших расходах пассивной среды (воды) до 300...1500 м3/ч через магистральный трубопровод диаметром 300...600 мм применение известного многосоплового струйного насоса не представляется возможным, так как он обладает ограниченной пропускной способностью и не позволяет достигнуть необходимого теплообмена активной и транспортируемой сред.

Аппараты типа "Фисоник" также рассчитаны на максимальный диаметр трубы до 100 мм. Поэтому необходимо иное техническое решение для передачи теплоносителя на теплообменные пункты и для отопления удаленных зданий жилых микрорайонов.

Техническим результатом заявляемого изобретения является улучшение процесса теплообмена путем повышения эффективности смешения сред и регулирование расхода и параметров транспортируемой среды (горячей воды).

Технический результат достигается тем, что внутри корпуса аппарата смонтированы центральное и периферийные сопла, причем центральное сопло образовано в виде кольцевой щели стенкой центрального патрубка для подвода пассивной среды и стенкой камеры смешения, а периферийные сопла в виде кольцевых щелей образованы стенками патрубков для подвода пассивной среды, установленными в торцевой и промежуточной стенках, перпендикулярных оси аппарата, по окружности эквидистантно центральному патрубку, и стенками камер смешения, закрепленными в кольцевой перегородке корпуса аппарата; при этом площадь выходного сечения центрального патрубка подвода пассивной среды Sцп определяется из соотношения Sцп/nмногосопловый струйный аппарат, патент № 2195586Sпп=0,75...1, где Sпп - площадь выходного сечения периферийного патрубка подвода пассивной среды; n - число периферийных патрубков, а площадь выходного сечения периферийного патрубка ограничивается соотношением Sпп/Sцп=0,12...0,2.

Предложенное техническое решение позволяет упростить конструкцию аппарата и обеспечить подвод активной среды (пара) независимыми потоками через центральное и периферийные сопла. Разделение потоков осуществляется посредством изолированных кольцевых камер, смонтированных в корпусе аппарата. При этом 35...50% пассивной среды (воды) подается через центральное сопло, а 50...65% воды транспортируется потоками пара через периферийные сопла. Регулируя расход пара и давление на входе в кольцевые камеры аппарата, можно эффективно управлять параметрами пароводяной смеси (температурой теплоносителя, расходом воды и давлением в системе). Применение большого числа периферийных сопел (от 4 до 12 в зависимости от диаметра трубы) позволяет существенно повысить эффективность смешивания, а следовательно, теплообмена пара с водой при транспортировании больших объемов горячей воды. Автономный контроль за температурой, давлением, а соответственно, и за расходом пара по центральному и периферийным потокам позволяет посредством задвижек, установленных перед входными патрубками струйного аппарата, управлять температурой, расходом воды и давлением в напорной магистрали после выхода пароводяной смеси в виде горячей воды из аппарата.

Существенно важным для эффективного управления параметрами теплоносителя является соотношение выходных сечений центрального и периферийных патрубков пассивной среды и число периферийных патрубков.

Установлено, что от 35% до 50% воды должно транспортироваться через центральное кольцевое сопло, а 50. ..65% объема подаваться в магистральный трубопровод через периферийные кольцевые сопла. При этом площадь выходного сечения отдельного периферийного патрубка должна составлять от 12% до 20% площади выходного сечения центрального патрубка, т.е. число периферийных патрубков будет колебаться от 4 до 12 в зависимости от диаметра магистральной трубы. Меньшее количество периферийных патрубков не обеспечивает стабильного теплообмена и ограничивает пропускную способность аппарата, а при количестве патрубков свыше 12 возрастают потери на сопротивление, а улучшение теплообмена не наблюдается.

Потоки пароводяной смеси от центрального и периферийных сопел смешиваются в магистральной трубе, происходит обмен импульсами между потоками теплоносителей и создается избыточное давление, достаточное для циркуляции теплоносителя по замкнутому контуру без применения сетевых насосов.

Сравнение известных технических решений с заявляемым показало, что существенными отличительными признаками предлагаемого аппарата являются смонтированные внутри корпуса центральное и периферийные сопла, образованные в виде кольцевых щелей стенками патрубков для подвода пассивной среды и стенками камер смешений, закрепленными на торцевой и промежуточной стенках и кольцевой перегородке устройства, причем периферийные патрубки подвода пассивной среды установлены по окружности эквадистантно центральному патрубку; при этом площадь выходного сечения центрального патрубка подвода пассивной среды Sцп определяется из соотношения

Sцп/nмногосопловый струйный аппарат, патент № 2195586Sпп=0,75...1,

где Sпп - площадь выходного сечения периферийного патрубка;

n - число периферийных патрубков,

а площадь выходного сечения периферийного патрубка ограничивается соотношением

Sпп/Sцп=0,12...0,2.

Технических решений со сходными признаками по патентной и научно-технической литературе не обнаружено, следовательно, заявляемое устройство обладает существенными отличиями.

На фиг. 1 представлен продольный разрез многосоплового струйного аппарата, а на фиг.2 - разрез по А-А на фиг.1.

Струйный аппарат состоит из корпуса 1, выполненного в форме трубы, снабженной фланцами 2 и 3 и содержит две кольцевых приемных камеры 4 и 5 с патрубками 6 и 7 для подвода активной среды (пара). Внутри корпуса на торцевой стенке 8, перпендикулярной оси аппарата, размещены центральный 9 и периферийные 10 патрубки подвода пассивной среды (воды). Камера смешения 11 центрального сопла смонтирована на промежуточной стенке 12 и кольцевой перегородке 13 внутри корпуса аппарата. Промежуточная стенка 12 служит второй опорой для периферийных патрубков 10. Камеры смешения 14 периферийных сопел закреплены в кольцевой перегородке 13, жестко соединенной с корпусом 1. Периферийные сопла образованы стенками патрубков 10 и камер смешения 14 и расположены по окружности эквидистантно оси устройства (фиг.2).

Центральное сопло образовано стенками патрубка 9 и камеры смешения 11.

Аппарат работает следующим образом.

Многосопловый струйный аппарат устанавливается посредством фланцев 2 и 3 (фиг. 1) на магистральный трубопровод. К патрубкам 6 и 7 присоединяются паропроводы со смонтированными на них запорной арматурой и контрольно-регулирующими приборами. Активная среда (пар) от парового котла через паропроводы и патрубки 6 и 7 подается в кольцевые камеры 4 и 5 двумя независимыми потоками. Из камеры 4 поток пара через центральное кольцевое сопло поступает в камеру смешения 11 и эжектирует пассивную среду (воду) через центральный патрубок 9. Пароводяная смесь под избыточным давлением поступает в магистральную трубу системы теплоснабжения. Через центральное сопло может подаваться от 35% до 50% объема транспортируемой воды.

Из кольцевой камеры 5 второй поток пара через периферийные сопла поступает в камеры смешения 14 и эжектирует воду через периферийные патрубки 10 подвода пассивной среды.

Центральный и периферийный потоки пароводяной смеси смешиваются и в виде горячей воды под давлением, создаваемым за счет эжекции, перемещаются по магистральному трубопроводу к потребителям, обеспечивая циркуляцию теплоносителя по замкнутому контуру без использования сетевых насосов большой мощности для транспортирования горячей воды.

Многосопловая конструкция насоса обеспечивает интенсивный теплообмен активной (пара) и пассивной (воды) сред, а разделение потоков пароводяной смеси на центральный и периферийные с независимым регулированием параметров на входе позволяет эффективно управлять выходными параметрами транспортируемого теплоносителя.

Пример.

Для котельной с паровым котлом производительностью до 20 т/ч и диаметре магистральной трубы 400 мм для нагрева и транспортирования воды установлен многосопловый струйный аппарат.

При внутреннем диаметре центрального патрубка подвода пассивной среды, равном 100 мм, площадь выходного сечения центрального патрубка Sцп составила Sцп= 750 мм2. Площадь выходного сечения периферийного патрубка Sпп была определена по соотношению

Sпп=Sцпмногосопловый струйный аппарат, патент № 21955860,16=7850многосопловый струйный аппарат, патент № 21955860,16=1256 мм2.

Число n периферийных патрубков составило

n=Sцп/0,78многосопловый струйный аппарат, патент № 2195586Sпп=7850/0,78многосопловый струйный аппарат, патент № 21955861256=8 шт.

Внутренний диаметр периферийного патрубка составил

многосопловый струйный аппарат, патент № 2195586

При температуре пара 165...180oС и давлении 0,6...0,9 МПа температура горячей воды в магистральной трубе составила 78...80oС при давлении в трубе до 1 МПа, а расход воды 350...400 м3/ч при расходе пара около 5% от массы транспортируемой воды, т. е. 17,5. . .20 т/ч. Температура возвратной воды достигала 45...50oС.

Применение струйного аппарата позволило резко снизить энергопотребление по сравнению с насосно-бойлерными установками и водогрейным котлом, применявшимися на котельной до реконструкции.

Класс F04F5/24 используемая для перемещения жидкостей, например содержащих твердые вещества, или жидкостей, смешанных с газами или парами 

способ запуска пароводяного струйного аппарата и устройство для его осуществления -  патент 2493440 (20.09.2013)
устройство струйно-кольцевого эжектора для откачки (выгрузки) загрязненных жидкостей, донных отложений, сыпучих веществ -  патент 2435989 (10.12.2011)
эжектор -  патент 2386866 (20.04.2010)
эжектор -  патент 2384756 (20.03.2010)
гидроэлеватор -  патент 2340796 (10.12.2008)
водоподъемное устройство -  патент 2329408 (20.07.2008)
водоподъемное устройство -  патент 2247874 (10.03.2005)
струйный аппарат -  патент 2228463 (10.05.2004)
способ эжекции и теплообмена и устройство для его осуществления -  патент 2200879 (20.03.2003)
пароводяной насос-подогреватель -  патент 2152542 (10.07.2000)

Класс F04F5/46 размещение сопел 

Наверх