взрывчатый состав для скважин

Классы МПК:C06B33/08 с нитрированным органическим соединением
C06B29/16 с нитрированным органическим соединением
Автор(ы):, , , , , , ,
Патентообладатель(и):Сулимов Алексей Александрович,
Сукоян Михаил Карапетович,
Борисов Анатолий Александрович,
Ермолаев Борис Сергеевич,
Михайлов Юрий Михайлович,
Королев Владимир Петрович,
Бибнев Николай Михайлович,
Баскаков Юрий Матвеевич
Приоритеты:
подача заявки:
2001-12-25
публикация патента:

Изобретение относится к области взрывчатых веществ, а именно к взрывчатым составам для глубоких скважин, и может быть использовано для проведения взрывных работ в условиях повышенных температур и давлений. Согласно изобретению термостойкий взрывчатый состав содержит в качестве горючего порошкообразный алюминий в количестве 15-35% и графит в количестве 3-10%, а также гексоген в количестве 10-30%, остальное - окислитель - перхлорат аммония. Изобретение направлено на создание взрывчатого состава для скважины с высокими взрывчатыми характеристиками и высокой термостойкостью.

Формула изобретения

Взрывчатый состав для скважин, состоящий из окислителя, гексогена и горючего, отличающийся тем, что в качестве окислителя он содержит перхлорат аммония (ПХА), а в качестве горючего - порошкообразный алюминий и графит при следующем соотношении компонентов, мас. %:

Алюминий - 15 - 35

Гексоген - 10 - 30

Графит - 3 - 10

ПХА - Остальное

Описание изобретения к патенту

Изобретение относится к области взрывчатых веществ (ВВ), а именно к взрывчатым составам для глубоких скважин, и может быть использовано для проведения взрывных работ в условиях повышенных температур и давлений.

Взрывные работы широко применяются в практике бурения скважин для ликвидации аварий, вскрытия и повышения отдачи пластов и для других операций, проведение которых с применением ВВ удается осуществить с меньшими затратами времени и средств, чем другими способами. К ВВ для скважин предъявляется ряд требований, обусловленных высокими температурами и давлениями в скважинах, главным из которых является термостойкость.

В глубоких скважинах можно использовать заряды из индивидуальных ВВ, отличающихся высокой термостойкостью таких, как гексоген (Энергетические конденсированные системы. Краткий энциклопедический словарь, под редакцией акад. Б.П. Жукова, М., Янус-К, с. 131), октоген (там же, с.334), однако эти ВВ весьма дороги, что приводит к резкому повышению стоимости работ.

Наиболее близким к предлагаемому составу по технической сущности (прототипом) является взрывчатый состав, содержащий окислитель - нитрат аммония (НА) в количестве 66 мас.%, горючие - 5 мас.% алюминиевой пудры и 5 мас. % тротила и гексоген в количестве 24 мас.%. Данный состав относится к промышленным смесевым ВВ типа аммонитов (а именно, скальный аммонит 1) и широко применяется во взрывной технике, в том числе в шпурах и скважинах (Л.В. Дубнов, Н.С. Бахаревич, А.И. Романов. Промышленные взрывчатые вещества, М., Недра, 1973, с. 120).

Известный состав (прототип) имеет хорошие взрывчатые и энергетические характеристики, вместе с тем, скальный аммонит 1 не обладает необходимым уровнем термостойкости для проведения взрывных работ в глубоких скважинах, предельная температура его использования не превышает 100oС, что недостаточно. Низкая термостойкость скального аммонита 1 связана в основном с использованием в его составе окислителя нитрата аммония.

Задачей предлагаемого изобретения является создание мощного (обладающего взрывчатыми характеристиками не хуже, чем у скального аммонита 1) недорогого взрывчатого состава для скважин, который имел бы более высокую термостойкость по сравнению с прототипом.

Решение поставленной задачи достигается предлагаемым взрывчатым составом для скважин, состоящим из окислителя, гексогена и горючего, включающего порошкообразный алюминий, который в качестве окислителя содержит перхлорат аммония (ПХА), а в качестве горючего - порошкообразный алюминий и графит, при следующем соотношении компонентов, мас. %: алюминий -(15-35); гексоген -(10-30), графит-(3-10); ПХА - остальное.

При разработке предлагаемого состава помимо достижения главного технического результата - существенного повышения термостойкости - исходили из необходимости иметь энергетические характеристики этого взрывчатого состава не хуже, чем у прототипа, и обеспечить достаточную взрывобезопасность на всех стадиях изготовления (смешение, прессование, снаряжение) и эксплуатации состава. Для повышения термостойкости состава, прежде всего, необходимо использовать другой окислитель. Нами предложено использование во взрывчатом составе более термостойкого окислителя - перхлората аммония (ПХА), а вместо легкоплавкого тротила (играющего в составе аммонитов роль горючего) - термостойкого горючего - графита.

Проведенные экспериментальные исследования показали, что использование в составе ПХА в качестве окислителя в сочетании с алюминиевой пудрой в качестве горючего обеспечивает повышение термостойкости до уровня 170oС. Легкоплавкий тротил из состава был исключен. При исследовании различных горючих добавок к алюминию было установлено, что хорошо проявляет себя добавка графита. Применение графита, помимо увеличения термостойкости, резко снижает чувствительность состава к механическим воздействиям (удару, трению), исключает возникновение статической электризации, облегчает уплотнение при прессовании (снижает давление прессования), и таким образом, существенно повышает взрывобезопасность на всех стадиях изготовления (смешение, прессование, снаряжение) и эксплуатации состава.

Состав используется в основном в виде пористых прессованных шашек. Применение предлагаемого состава обеспечивает также увеличение объемного энергосодержания изготовляемых из него зарядов ВВ за счет повышенной плотности зарядов по сравнению с прототипом (на 17-22% при одинаковой пористости).

По результатам систематических термодинамических расчетов для предлагаемого состава в сочетании с экспериментальной проверкой условий надежной работы зарядов из них были определены границы содержания в составе отдельных компонентов

По сравнению с прототипом существенно увеличено содержание Аl в составе до (15-35) мас.%, что согласно результатам термодинамических расчетов позволяет значительно увеличить энергетические характеристики состава. При использовании таких составов в обводненных скважинах может выделяться дополнительная энергия за счет реакции Аl с водой, окружающей заряд.

Содержание гексогена (10-30) мас.% выбрано из условия обеспечения приемлемых для работы в скважинах детонационных характеристик (скорости детонации, критического диаметра, восприимчивости к инициирующему импульсу) прессованных шашек при диаметре от 20-30 мм. Было установлено, что критический диаметр детонации для таких составов в безоболочечных зарядах не превышает 20 мм.

Приводим результаты испытаний предлагаемого состава.

Для разных композиций ПХА/А1/графит/гексоген в заявленных пределах измерена скорость детонации на образцах в виде шашек диаметром 30 мм с плотностью 1,9-2,0 г/см3, которая составила 4,0-5,5 км/с. С использованием единой программы термодинамических расчетов определены энергетические характеристики (теплота взрыва и работа расширения продуктов детонации) для прототипа и предлагаемого состава. Для скального аммонита 1 теплота взрыва и работа расширения продуктов детонации равны 1275 ккал/кг и 1750 ккал/кг, для состава 49ПХА/25А1/6графит/20гексоген - 2105 ккал/кг и 2180 ккал/кг соответственно. Как показывает сравнение, предлагаемый состав превосходит прототип по своим энергетическим характеристикам.

Определена термостойкость предлагаемого состава. Состав в виде шашек плотностью 1,9-2,0 г/см3 после пребывания при 170oС в течение 6 ч показал уменьшение массы не более 2%, что допустимо для термостойких ВВ. Таким образом, предлагаемый смесевой состав имеет существенно более высокие показатели термостойкости и энергетических характеристик, чем аммонит 1.

Все используемые в составе компоненты доступны, имеют широкую базу промышленного производства, состав имеет невысокую (по сравнению с гексогеном) стоимость.

Класс C06B33/08 с нитрированным органическим соединением

способ улучшения взрывчатых веществ и взрывчатое вещество /варианты/ -  патент 2513848 (20.04.2014)
нанодисперсный взрывчатый состав -  патент 2448934 (27.04.2012)
воспламенительный состав -  патент 2240994 (27.11.2004)
воспламенительный неоржавляющий ударный состав -  патент 2209808 (10.08.2003)
взрывчатый состав для скважин -  патент 2190586 (10.10.2002)
огнепроводный шнур и состав для его изготовления -  патент 2170222 (10.07.2001)
фейерверочный состав, способ его изготовления, многослойный фейерверочный элемент и способ его изготовления -  патент 2064914 (10.08.1996)
пиротехнический состав красного огня -  патент 2046123 (20.10.1995)
пиротехнический состав голубого огня -  патент 2046122 (20.10.1995)
пиротехнический состав белого огня -  патент 2046121 (20.10.1995)

Класс C06B29/16 с нитрированным органическим соединением

Наверх