способ интенсификации добычи нефти и газа

Классы МПК:E21B43/12 способы или устройства для регулирования потока добываемой жидкости или газа в скважинах или к скважинам
E21B47/06 измерение температуры или давления
Автор(ы):
Патентообладатель(и):ОАО "Сибнефть-Ноябрьскнефтегазгеофизика",
Пасечник Михаил Петрович,
Молчанов Евгений Петрович,
Коряков Анатолий Степанович
Приоритеты:
подача заявки:
2000-07-04
публикация патента:

Изобретение относится к нефтяной и газовой промышленности и используется для интенсификации добычи нефти и газа. Обеспечивает увеличение добычи нефти и газа, оптимизацию и автоматизацию процессов. Сущность изобретения: по способу контролируют параметры процесса добычи, проводят на основе данных контроля геолого-технические мероприятия, направленные на воздействие на пласт для увеличения притока флюида. Воздействие на пласт выполняют в процессе добычи путем варьирования в геолого-технических мероприятиях параметров процесса добычи и непрерывного контроля этих параметров. Это осуществляют в автоматическом режиме. В качестве параметров процесса добычи выбирают наиболее значимые для увеличения притока: давление скважинной жидкости, температуру, влажность и плотность жидкости. Их фиксируют с динамикой изменения этих параметров в зависимости от частоты вращения электродвигателя. Вышеназванные параметры процесса добычи и величину притока флюида настраивают через блок управления на поддержание оптимальных значений варьированием частоты вращения электродвигателя. Время окончания геолого-технических мероприятий определяют по моменту оптимизации параметров процесса добычи и величины притока флюида. Для возможности воздействия параметров процесса добычи на пласт систему подачи и систему всасывания добычного насоса закольцовывают нижними и верхними отверстиями в колонне насосно-компрессорных труб и отделяют от зоны пласта пакером. 1 ил.
Рисунок 1

Формула изобретения

Способ интенсификации добычи нефти и газа, в котором контролируют параметры процесса добычи, проводят на основе данных контроля геолого-технические мероприятия, направленные на воздействие на пласт для увеличения притока флюида, отличающийся тем, что воздействие на пласт выполняют в процессе добычи путем варьирования в геолого-технических мероприятиях параметров процесса добычи и непрерывного контроля этих параметров, в том числе в автоматическом режиме, в качестве параметров процесса добычи выбирают наиболее значимые для увеличения притока: давление скважинной жидкости, температуру, влажность и плотность жидкости, которые фиксируют с динамикой изменения этих параметров в зависимости от частоты вращения электродвигателя, при этом вышеназванные параметры процесса добычи и величину притока флюида настраивают через блок управления на поддержание оптимальных значений варьированием частоты вращения электродвигателя, время окончания геолого-технических мероприятий определяют по моменту оптимизации параметров процесса добычи и величины притока флюида, а для возможности воздействия параметров процесса добычи на пласт систему подачи и систему всасывания добычного насоса закольцовывают нижними и верхними отверстиями в колонне насосно-компрессорных труб и отделяют от зоны пласта пакером.

Описание изобретения к патенту

Изобретение относится к области нефтяной и газовой промышленности и используется для интенсификации добычи нефти и газа.

Известны способы интенсификации добычи нефти и газа, заключающиеся в воздействии на пласт путем проведения различных геолого-технических мероприятий (ГТМ): гидроразрыв пласта, воздействие кислотами, активными веществами, пороховыми газами, свабирование и др (см., например, Г.Л. Чазов, В.И. Азаматов и др. Термохимическое воздействие на малодебитные и сложные скважины. М. , Недра, 1990; Инструкция по разрыву пластов давлением пороховых газов. М., Недра, 1990; В.Н. Моисеев. Применение геофизических методов в процессе эксплуатации скважин. М., Недра, 1990).

Недостаток известных способов интенсификации добычи заключается в том, что результаты ГТМ становятся известны после проведения мероприятий, когда повлиять на процесс уже невозможно. Это приводит к необходимости повторного проведения ГТМ в случаях, когда интенсификация не достигнута, что связано с большими затратами.

Данный недостаток устранен в другом известном способе, принятом за прототип (см. , например, А.В. Мальцев, Л.М.Дюков. Приборы и средства контроля процессов бурения Справочное пособие. М., Недра, 1989, с. 55-70). В этом способе вначале контролируют параметры процесса добычи, затем проводят ГТМ и снова начинают добычу с контролем параметров процесса добычи и величины притока. Мероприятия повторяют в случае, если параметры процесса и величина добычи не достигли оптимальных значений. Для сведения сообщаем, что подобный процесс в прототипе выполняют при бурении скважин, однако, по аналогии его возможно выполнять и при добыче флюида (нефти или газа).

Применение способа по прототипу не позволяет достичь указанного ниже технического результата по следующим причинам:

- отсутствует обратное влияние параметров процесса добычи на величину притока флюида;

- процесс добычи прекращают при проведении ГТМ;

- ГТМ направлены на простое увеличение притока флюида, но не на его оптимизацию, в связи с чем и время проведения ГТМ не является оптимальным;

- в качестве ГТМ не всегда выбирают наиболее значимые мероприятия для увеличения притока;

- вместе с прекращением добычи флюида при проведении ГТМ прекращают и контроль параметров процесса добычи.

Задачей изобретения является создание способа интенсификации добычи нефти и газа, в котором устранены указанные недостатки.

Техническим результатом, достигаемым при использовании предложенного изобретения, является оптимизация и автоматизация процессов за счет установления обратной связи, непрерывность процесса добычи при проведении ГТМ, оптимизация времени проведения ГТМ, увеличение добычи нефти и газа.

Указанный технический результат достигается тем, что в способе интенсификации добычи нефти и газа, в котором контролируют параметры процесса добычи, затем проводят на основе данных контроля геолого-технические мероприятия, направленные на воздействие на пласт для увеличения притока флюида, и снова начинают добычу с контролем параметров, согласно изобретению воздействие на пласт выполняют в процессе добычи путем варьирования в геолого-технических мероприятиях параметров процесса добычи и непрерывного контроля этих параметров, в том числе, в автоматическом режиме, в качестве параметров процесса добычи выбирают наиболее значимые для увеличения притока: давление скважинной жидкости, температуру, влажность и плотность жидкости, которые фиксируют с динамикой изменения этих параметров в зависимости от частоты вращения электродвигателя, при этом вышеназванные параметры процесса добычи и величину притока флюида настраивают через блок управления на поддержание оптимальных значений варьированием частоты вращения электродвигателя, время окончания геолого-технических мероприятий определяют по моменту оптимизации параметров процесса добычи и величины притока флюида, а для возможности воздействия параметров процесса добычи на пласт систему подачи и систему всасывания добычного насоса закольцовывают нижними и верхними отверстиями в колонне насосно-компрессорных труб и отделяют от зоны пласта пакером.

Воздействие на пласт в процессе добычи позволяет осуществлять обратную связь о результатах воздействия по величине притока флюида, что позволяет автоматизировать процесс воздействия и добычи с постоянной оптимальной величиной притока флюида.

Варьирование параметрами процесса добычи позволяет постоянно, просто и наиболее экономично воздействовать на пласт и на процесс добычи и не прекращать процесс добычи при проведении ГТМ, так как само варьирование параметрами процесса добычи является одним из направлений таких мероприятий.

Непрерывный контроль параметров процесса добычи как раз и является той обратной связью, которая позволяет оперативно варьировать параметры процесса, оптимизировать и автоматизировать процесс добычи.

При автоматизации процесса добычи время изменения его параметров также осуществляется автоматически по параметру оптимизации, в качестве которого принята оптимальная величина притока флюида.

Выбранные в качестве параметров процесса добычи наиболее значимые параметры являются и оптимальными для увеличения притока флюида, поскольку именно они определяют характер протекания процесса добычи.

Закольцовывание системы подачи и всасывания добычного насоса позволяет воздействовать на пласт изменяемыми параметрами процесса добычи, как одним из геолого-технических мероприятий. В частности, такими активными изменяемыми параметрами могут быть давление флюида, скорость нарастания и сбрасывания давления, время выдержки давления и т.п.

Схема реализации способа показана на чертеже, где изображены:

1 - нефтяная или газовая скважина;

2 - колонна насосно-компрессорных труб (НКТ);

3 - поршневой добычной насос;

4 - качалка, передающая движение насосу 3;

5 - электродвигатель, приводящий в колебательное движение качалку 4;

6 - датчик контроля параметров процесса добычи (давления, температуры, влажности, плотности флюида и т.п.);

7 - датчик объема добываемого флюида;

8 - система передачи сигналов от датчиков 6 и 7;

9 - блок управления двигателем 5 по данным, полученным от датчиков 6 и 7;

10 - пласт, из которого добывают флюид и на который воздействуют геолого-техническими мероприятиями;

11 - верхние отверстия в колонне НКТ 2;

12 - нижние отверстия в колонне НКТ 2, которые совместно с отверстиями 11 закольцовывают систему подачи и систему всасывания добычного насоса 3;

13 - пакер, отделяющий зону пласта 10 от закольцованной системы подачи и всасывания;

Способ осуществляют следующим образом.

Вначале устанавливают оборудование в соответствии со схемой, представленной на чертеже. Блок управления 9 настраивают на автоматическое управление частотой вращения электродвигателя 5, обеспечивающей максимальный приток флюида из пласта 10 в течение длительного времени, то есть оптимизируют величину добычи. Данные берут от датчика 7. Кроме того, блок управления 9 настроен на фиксацию оптимальных параметров в процессе добычи от датчика 6, обеспечивающих оптимальную величину притока флюида. Блок управления 9 настраивают на совместный учет оптимальных параметров от датчиков 6 и 7, запоминание их и самонастройку на обеспечение этих параметров путем изменения частоты вращения электродвигателя 5. При этом предусматривается возможность изменения оптимальных параметров через значительный промежуток времени.

При включении в работу электродвигателя 5 качалка 4 начинает перемещать насос 3 возвратно-поступательно (вверх-вниз). При движении насоса 3 вверх часть флюида из нагнетательной полости направляется в сборник мимо датчика 7, а другая часть через отверстие 11 переходит в затрубье и через отверстие 12 попадает в систему всасывания насоса 3.

При этом гидростатическое давление жидкости (флюида) под пакером 13 уменьшается, что способствует увеличению притока флюида из пласта 10.

При спуске насоса 3 гидростатическое давление столба жидкости воздействует на жидкость под пакером 13, и давление под пакером возрастает, что благоприятно воздействует на очистку каналов в прискважинной зоне пласта. В итоге это приводит к увеличению притока флюида. При спуске насоса 3 часть полученного притока флюида перетекает через отверстия 11 и 12 в систему подачи насоса 3. При подъеме насоса 3 вверх часть этого притока уйдет в систему сбора флюида мимо датчика 7.

Возможность добычи флюида в приведенных условиях обеспечивается расчетным выполнением сечений отверстий 11 и 12, а также соотношением объемов трубного пространства и затрубья.

Так как для оптимального притока флюида имеет значение не только давление скважинной жидкости в зоне пласта, но и ряд других параметров (температура, влажность, плотность жидкости и т.п.), то датчик 6 фиксирует динамику изменения этих параметров в зависимости от частоты перемещения насоса 3, качалки 4 и электродвигателя 5. Блок управления 9 настраивается в автоматическом режиме на поддержание оптимальных значений этих параметров, а также величины притока флюида, фиксируемой датчиком 7, что обеспечивается варьированием частоты вращения электродвигателя 5. Таким образом, сами параметры процесса добычи использованы в качестве геолого-технических мероприятий для интенсификации добычи.

Как видно, предложенный способ обеспечивает интенсивную и оптимальную величину притока флюида в течение длительного времени.

Класс E21B43/12 способы или устройства для регулирования потока добываемой жидкости или газа в скважинах или к скважинам

устройство для регулирования расхода флюида -  патент 2529316 (27.09.2014)
скважинная установка -  патент 2529310 (27.09.2014)
способ разработки многопластового нефтяного месторождения -  патент 2528305 (10.09.2014)
способ эксплуатации скважин, расположенных в зоне водонефтяного контакта -  патент 2527422 (27.08.2014)
способ снижения водопритока в горизонтальный ствол скважины трещинно-порового коллектора -  патент 2527413 (27.08.2014)
устройство для одновременно-раздельной эксплуатации пластов (варианты) -  патент 2526080 (20.08.2014)
устройство для оценки технического состояния установок электроцентробежных насосов в процессе эксплуатации -  патент 2525094 (10.08.2014)
способ разработки неоднородного месторождения наклонными и горизонтальными скважинами -  патент 2524800 (10.08.2014)
механизм для активирования множества скважинных устройств -  патент 2524219 (27.07.2014)
устройство для одновременно-раздельной добычи флюида из двух пластов скважины (варианты) -  патент 2524075 (27.07.2014)

Класс E21B47/06 измерение температуры или давления

устройство для пофазного замера физических параметров флюида в горизонтальной скважине -  патент 2523335 (20.07.2014)
способ определения давления насыщения нефти газом -  патент 2521091 (27.06.2014)
система и способ оптимизирования добычи в скважине -  патент 2520187 (20.06.2014)
способ определения забойного давления в нефтяной скважине, оборудованной погружным электронасосом -  патент 2515666 (20.05.2014)
способ мониторинга внутрискважинных параметров (варианты) и система управления процессом добычи нефти -  патент 2509888 (20.03.2014)
способ определения профиля притока и параметров околоскважинного пространства в многопластовой скважине -  патент 2505672 (27.01.2014)
способ исследования технического состояния скважины -  патент 2500886 (10.12.2013)
аппаратура для исследования скважин -  патент 2500885 (10.12.2013)
способ гидрогазодинамических исследований скважин -  патент 2490449 (20.08.2013)
способ вызова притока пластового флюида из скважины -  патент 2485305 (20.06.2013)
Наверх