твердый сплав для высокотемпературных подшипников

Классы МПК:C22C29/10 на основе карбидов титана
C22C32/00 Цветные сплавы, содержащие от 5% до 50% по массе оксидов, карбидов, боридов, нитридов, силицидов или других соединений металлов, например оксинитридов, сульфидов, добавляемых в эти сплавы или образуемых в них
C22C1/10 сплавы с неметаллическими составляющими
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "ВНИПП"
Приоритеты:
подача заявки:
2000-10-06
публикация патента:

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении деталей подшипников качения, работающих в условиях воздействия высоких температур. Твердый сплав для высокотемпературных подшипников, содержащий карбид титана, никель и молибден, дополнительно содержит карбид ниобия при следующем соотношении компонентов, маc.%: Ni 10,0 - 30,0; Мо 2,0 - 4,0; NbC 11,3 - 16,5; TiC - остальное. Технический результат: повышение прочностных характеристик, жаростойкости и износостойкости при достаточной пластичности. 3 табл.
Рисунок 1

Формула изобретения

Твердый сплав для высокотемпературных подшипников, содержащий карбид титана, никель и молибден, отличающийся тем, что он дополнительно содержит карбид ниобия при следующем соотношении ингредиентов, маc.%: Ni - 10,0-30,0; Мо - 2,0 - 4,0; NbC - 11,3-16,5; TiC - остальное.

Описание изобретения к патенту

Изобретение относится к области металлургии и может быть использовано при изготовлении деталей подшипников качения, работающих в условиях воздействия высоких температур.

Классический материал твердого сплава, применяемого для высокотемпературных подшипников, должен обладать высокой прочностью, твердостью, износостойкостью, структурной однородностью и эти его свойства должны обязательно сочетаться с достаточной пластичностью. Кроме того высокотемпературные подшипники должны обладать высокой жаростойкостью, поскольку недостаточная жаростойкость сплавов приводит к быстрому разрушению деталей подшипников под действием высоких температур и динамических напряжений, возникающих при эксплуатации узлов, где они используются.

Известен высокотемпературный твердый сплав на основе карбида титана с различными добавками, включая ниобий, обладающий высокими прочностными характеристиками (патент ФРГ 2711509. С 22 С 29/00, 1983).

Однако он обладает низкой пластичностью и нашел применение в основном для изготовления режущих инструментов.

Известен также коррозийно-стойкий высокотемпературный спеченный сплав, принятый за прототип, состоящий из 42-72% карбидов титана, 4-15% твердого раствора сложного карбида из никеля, тантала, карбидов титана, ниобия и углерода, 20-50% металлической связки из сплава Ni-Mo (патент США 2711009, кл. НКИ 29-182.7. 1955). Однако такой сплав не обладает достаточной пластичностью и жаростойкостью и не годится для изготовления высокотемпературных подшипников.

Техническим результатом заявляемого изобретения является твердый сплав для высокотемпературных подшипников, обладающий повышенными прочностными характеристиками, жаростойкостью и износостойкостью при достаточной пластичности за счет введения в сплав карбида ниобия и более рационального набора количества компонентов сплава.

Технический результат достигается тем, что композиция предлагаемого твердого сплава содержит карбид титана, никель и молибден. При этом дополнительно он содержит карбид ниобия, а ингредиенты взяты в следующем соотношении, мас.: Ni 10,0-30,0; Мо 2,0-4,0; NbC 11,3-16,5; TiC-остальное.

Введение карбидов ниобия позволяет повысит твердость, жаростойкость, а также снизить истираемость композитного сплава.

В результате лабораторных исследований предлагаемого твердого сплава была установлена температура его разупрочнения 800oС. Этот сплав показал более высокую, по сравнению с прототипом, контактную выносливость и контактную ползучесть при напряжениях 30.000-45.000 кг/см2. Это означает, что изделия из предлагаемого сплава могут эксплуатироваться при 700-800oС и кратковременно в течение по крайней мере 3 ч при 850-900oС.

Исследования проводились со сплавом следующего cocтава, мас%: сложный титанониобиевый карбид - 74; никель - 23; молибден - 3. Он оказался более прочным и износостойким по сравнению с прототипом.

Прочностные свойства и жаростойкость предлагаемого сплава oпpeделялись на стандартных образцах, принятых для данного вида испытаний для твердых сплавов, а также дополнительно проводились испытания на контактную ползучесть на образцах при 700, 800, 900 и 1000oС.

Образцы нагружались постоянной нагрузкой Р=425 кг и выдерживались под нагрузкой после нагрева до температуры испытания в течение 16 ч.

Испытания показали, что средняя температура разупрочнения предлагаемого сплава составляет 800oС.

Испытания износостойкости сплава при нагрузке Р=2 и 6 кг (20.000 кг/см2) при 20oC в паре с шариками из того же сплава показали, что износ колец и шариков после 3-часового испытания не наблюдался.

Исследование контактной выносливости и ползучести производилось на плоских образцах (контакт шарика с плоскостью) в подшипниковом узле, собранном по типу упорного подшипника с одним плоским кольцом при скорости вращения 2200 об/мин. Результаты испытаний показали высокую температуру разупрочнения, равную 800oС.

Высокотемпературные испытания образцов в виде подшипника качения 8100, изготовленного из предлагаемого сплава, показали, что этот материал может кратковременно эксплуатироваться в условиях температуры 900oС в агрессивной среде.

Результаты испытаний приведены в таблицах.

Предлагаемый твердый сплав титанониобиевого карбида никель-молибденовой связкой является новым по сравнению с прототипом, обладает изобретательским уровнем по сравнению с известным техническим уровнем и является промышленно применимым, то есть отвечает признакам изобретения.

Класс C22C29/10 на основе карбидов титана

шаровой затвор из кермета и способ его изготовления -  патент 2525965 (20.08.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
способ изготовления изделий из композита на основе карбида титана -  патент 2401719 (20.10.2010)
спеченный твердый сплав -  патент 2327759 (27.06.2008)
способ изготовления абразивного порошка -  патент 2196837 (20.01.2003)
способ получения износостойкого композиционного материала на основе карбида титана -  патент 2190681 (10.10.2002)
твердый сплав и способ его получения -  патент 2165473 (20.04.2001)
износостойкий материал -  патент 2062813 (27.06.1996)
износостойкий спеченный материал -  патент 2044099 (20.09.1995)

Класс C22C32/00 Цветные сплавы, содержащие от 5% до 50% по массе оксидов, карбидов, боридов, нитридов, силицидов или других соединений металлов, например оксинитридов, сульфидов, добавляемых в эти сплавы или образуемых в них

литой композиционный сплав и способ его получения -  патент 2492261 (10.09.2013)
комплексный модификатор для заэвтектических силуминов -  патент 2492259 (10.09.2013)
шихта для получения композита на основе алюминия для получения водорода -  патент 2478726 (10.04.2013)
легированный вольфрам, полученный химическим осаждением из газовой фазы -  патент 2402625 (27.10.2010)
изготовление продукта из конструкционных металлических материалов, армированных карбидами -  патент 2283888 (20.09.2006)
композиционный материал -  патент 2216602 (20.11.2003)
композитный материал, способ его получения, излучающая тепло панель для полупроводникового прибора, полупроводниковый прибор (варианты), диэлектрическая панель и электростатическое поглощающее устройство -  патент 2198949 (20.02.2003)
шихта для получения пористого проницаемого материала -  патент 2186657 (10.08.2002)
порошковый материал для защитных наплавочных покрытий -  патент 2171309 (27.07.2001)
твердый сплав и способ его получения -  патент 2165473 (20.04.2001)

Класс C22C1/10 сплавы с неметаллическими составляющими

композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
литой композиционный материал на основе алюминия и способ его получения -  патент 2516679 (20.05.2014)
способ модифицирования чугуна -  патент 2515158 (10.05.2014)
способ модифицирования чугуна с шаровидным графитом -  патент 2500824 (10.12.2013)
способ получения композиционного материала на основе сплава алюминий-магний с содержанием нанодисперсного оксида циркония -  патент 2499849 (27.11.2013)
литой композиционный сплав и способ его получения -  патент 2492261 (10.09.2013)
способ упрочнения легких сплавов -  патент 2487186 (10.07.2013)
способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов -  патент 2477670 (20.03.2013)
композиционный материал для электротехнических изделий -  патент 2466204 (10.11.2012)
способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий -  патент 2458168 (10.08.2012)
Наверх