способ электролитического осаждения сплава железо-фосфор

Классы МПК:C25D3/56 сплавов
C25D5/18 нанесение покрытий с помощью модулированного, пульсирующего или реверсированного тока
Автор(ы):, , , ,
Патентообладатель(и):Курская государственная сельскохозяйственная академия им. проф. И.И. Иванова
Приоритеты:
подача заявки:
1999-11-02
публикация патента:

Изобретение относится к области электролитического осаждения твердых износостойких покрытий, в частности железофосфорных покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Осаждение ведут из электролита, содержащего, г/л: хлористое железо 350-400, соляную кислоту 0,6-0,8, гипофосфит натрия 2-12, на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, при катодной плотности тока 35-45 А/дм2, температуре электролита 30-50°С. Способ позволяет получать покрытия с высокой микротвердостью и износостойкостью.

Формула изобретения

Способ электролитического осаждения сплава железо-фосфор из электролита, содержащего хлористое железо, соляную кислоту, гипофосфит натрия, отличающийся тем, что осаждение ведут из электролита, содержащего, г/л:

Хлористое железо - 350 - 400

Соляную кислоту - 0,6 - 0,8

Гипофосфит натрия - 2 - 12

на переменном асимметричном токе с коэффициентом асимметрии 1,2 - 6, при катодной плотности тока 35 - 45 А/дм2, температуре электролита 30 - 50oС.

Описание изобретения к патенту

Изобретение относится к электролитическому осаждению твердых износостойких покрытий, в частности железофосфорных покрытий, применяемых для восстановления и упрочнения поверхностей деталей.

Известен способ электролитического осаждения сплава железо-фосфор из электролита, содержащего хлористое железо 150-350 г/л, соляную кислоту 1-2,4 г/л, гипофосфит натрия (калия) 3,5-7,0 г/л, сахарин 3-4 г/л. Процесс ведется при плотности тока 10-35 А/дм2 и температуре 60-80oC (а.с. N 264098, МПК C 25 D 3/56. Способ электролитического осаждения сплава железо-фосфор, авт. А. А. Лашас).

Недостатком известного способа является проведение процесса при высокой температуре, слабая сцепляемость с основой, требуется частая корректировка.

За прототип взят известный способ электролитического железнения на основе электролита, содержащего хлористое железо, соляную кислоту, гипофосфит натрия (калия). Процесс ведется при температуре 75-80oC и катодной плотности тока 25-30 А/дм2 (a.с. N 166869, МПК C 23 B 5/04. Способ электролитического железнения, авт. А.А. Лашас и И.Н. Выстрелков).

Недостатком данного способа является недостаточная микротвердость получаемых покрытий и сравнительно низкая их износостойкость.

Для повышения микротвердости получаемых покрытий и повышения их износостойкости предлагается способ электролитического осаждения сплава железо-фосфор из электролита, содержащего, г/л:

Хлористое железо - 350-400

Соляная кислота - 0,6-0,8

Гипофосфит натрия - 2-12

Процесс осаждения ведут на переменном асимметричном токе, начиная с коэффициента асимметрии 1,2 и повышая до 6, катодной плотности тока 35-45 А/дм2, температуре электролита 30-50oC. Концентрация хлористого железа находится в пределах 350-400 г/л. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности (Швецов А. Н. Основы восстановления деталей осталиванием. Омск, 1973, с. 77-79).

Содержание соляной кислоты находится в пределах 0,6-0,8 г/л. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разряжением водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,6 г/л происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытия и этим ухудшает их структуру.

Содержание гипофосфита натрия находится в интервале 2-12 г/л. Ниже 2 г/л применение гипофосфита натрия нецелесообразно, т.к. получаемое покрытие по твердости близко к покрытию твердым железом. Выше 12 г/л применение гипофосфита натрия приводит к изменению физико-механических свойств покрытия, резко увеличивается хрупкость, что отрицательно сказывается на износостойкости покрытия.

Температурный интервал находится в пределах 30-50oC. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное, и скорость осаждения покрытия низкая. Выше 50oC использовать электролит невыгодно с экономической точки зрения. Качественного изменения покрытия не происходит, однако увеличиваются затраты на подогрев электролита.

Катодная плотность тока находится в пределах 35-45 А/дм2. Ниже 35 А/дм2 плотность тока использовать нецелесообразно, т.к. процесс электролиза имеет низкую скорость осаждения покрытия. При катодной плотности тока больше 45 А/дм2 происходит интенсивное дендридообразование и резко снижается выход потока.

Начало осаждения покрытия происходит начиная с коэффициента асимметрии 1,2, который обеспечивает высокую сцепляемость покрытия с основой Gсц = 300 МПа. Если коэффициент асимметрии ниже 1,2, процессa осаждения не происходит. В процессе электроосаждения коэффициент асимметрии увеличивается до 6, который характеризуется стабильной скоростью осаждения. Дальнейшее повышение коэффициента асимметрии не рекомендуется, т. к. с дальнейшим снижением анодной составляющей процесс переходит на постоянный ток.

На основе проведенных испытаний оптимальными условиями способа являются условия, приведенные в качестве примера.

Электролит состоит из следующих компонентов в количестве, г/л:

Хлористое железо - 350

Соляная кислота - 0,7

Гипофосфит натрия - 8

Процесс электролитического покрытия ведут при температуре 40oC и катодной плотности тока 40 А/дм2. Процесс осаждения начинается при коэффициенте асимметрии 1,2, который повышают до 5. В дальнейшем осаждение идет при коэффициенте асимметрии 5. Покрытие имеет сцепляемость Gсц = 300 МПа, микротвердость 7500 МПа. Скорость осаждения равна 0,3 мм/ч.

Предлагаемый способ позволяет получать покрытия с высокой микротвердостью и износостойкостью, что дает возможность использовать его в народном хозяйстве для восстановлении и ремонта деталей машин.

Класс C25D3/56 сплавов

щелочной электролит для электроосаждения цинк-никелевых покрытий -  патент 2511727 (10.04.2014)
состав электролита антифрикционного электролитического сплава "цинк-железо" для осаждения в условиях гидромеханического активирования -  патент 2489527 (10.08.2013)
способ электролитического осаждения сплава железо-алюминий -  патент 2486294 (27.06.2013)
система и способ нанесения покрытий из металлических сплавов посредством применения гальванической технологии -  патент 2473718 (27.01.2013)
электролит для осаждения сплава цинк-галлий -  патент 2459016 (20.08.2012)
способ нанесения электролитических покрытий на основе хрома -  патент 2457288 (27.07.2012)
электролит для осаждения сплава никель-висмут -  патент 2457287 (27.07.2012)
способ получения оксидного покрытия на стали -  патент 2449062 (27.04.2012)
способ получения покрытия из оксидов металлов на стали -  патент 2449061 (27.04.2012)
электролит для электроосаждения сплава цинк-никель -  патент 2441107 (27.01.2012)

Класс C25D5/18 нанесение покрытий с помощью модулированного, пульсирующего или реверсированного тока

система и способ нанесения покрытий из металлических сплавов посредством применения гальванической технологии -  патент 2473718 (27.01.2013)
способ электролитического никелирования -  патент 2431000 (10.10.2011)
способ электролитического осаждения кобальта -  патент 2340709 (10.12.2008)
способ и установка для гальванического осаждения никеля, кобальта, сплавов никеля или сплавов кобальта с использованием периодических импульсов тока -  патент 2281990 (20.08.2006)
способ электрохимической металлизации внутренней поверхности труб -  патент 2244766 (20.01.2005)
способ повышения надежности карданных шарниров -  патент 2234008 (10.08.2004)
способ нанесения рутениевого покрытия -  патент 2202006 (10.04.2003)
гальваническая ванна и способ получения твердых структурированных хромовых слоев -  патент 2202005 (10.04.2003)
способ электролитического осаждения сплава железо - молибден -  патент 2174163 (27.09.2001)
способ электролитического восстановления изношенных поверхностей деталей холодным твердым железнением -  патент 2147629 (20.04.2000)
Наверх