сплав на никелевой основе для монокристаллических затравок и способ его выплавки

Классы МПК:C22C19/03 никеля
C22C30/00 Сплавы, содержащие менее 50% по массе каждого компонента
C22C1/02 плавлением 
Автор(ы):, , , ,
Патентообладатель(и):Всероссийский научно-исследовательский институт авиационных материалов
Приоритеты:
подача заявки:
1999-02-26
публикация патента:

Для получения монокристаллических тугоплавких затравок предложен сплав, содержащий, мас.%: один элемент из группы, включающeй рений и родий, 25-50; иттрий 0,001-0,100 и никель - остальное. Способ выплавки этого сплава включает загрузку шихты, ее расплавление под вакуумом, многократное термоциклирование расплава путем нагрева до температуры 1660 - 1780oС, выдержки при этой температуре и охлаждения до температуры 1630 - 1650oC с одновременным электромагнитным перемешиванием, раскисление расплава и его разливку, при этом продолжительность нагрева и выдержки расплава относится к периоду охлаждения и перемешивания расплава как (2-3) : (1-1,5). Использование изобретения позволит получать тугоплавкий никелевый сплав высокого качества для изготовления затравок. Применение затравок из никелевого сплава с повышенной температурой плавления расширит возможности технологического процесса, позволит повысить рабочие температуры при отливке монокристаллических лопаток ГТД и ГТУ заданной КГО, увеличит выход годного по макроструктуре на 7-10%. 2 с. и 2 з.п. ф-лы, 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

1. Сплав на никелевой основе для монокристаллических затравок, содержащий тугоплавкий элемент, отличающийся тем, что он дополнительно содержит иттрий, а в качестве тугоплавкого элемента содержит один элемент из группы, включающей рений и родий, при следующем соотношении компонентов, мас.%:

Один элемент из группы, включающей рений и родий - 25 - 50

Иттрий - 0,001 - 0,1

Никель - Остальное

2. Способ выплавки сплава на никелевой основе для монокристаллической затравки, отличающийся тем, что осуществляют загрузку шихты, ее расплавление под вакуумом, термоциклирование расплава путем нагрева до температуры 1660 - 1780oC, выдержки при этой температуре и охлаждения до температуры 1630 - 1650oC с одновременным электромагнитным перемешиванием в процессе охлаждения, раскисление расплава и его разливку, при этом продолжительность нагрева и выдержки расплава относится к периоду охлаждения и перемешивания расплава как (2-3) : (1-1,5).

3. Способ по п.2, отличающийся тем, что раскисление проводят за 1 - 10 мин до начала разливки.

4. Способ по п.2, отличающийся тем, что термоциклирование расплава осуществляют не менее двух раз.

Описание изобретения к патенту

Изобретение относится к металлургии и может быть использовано при получении монокристаллических изделий из жаропрочных сплавов заданной кристаллографической ориентации, например лопаток ГТД и ГТУ.

Для получения монокристаллических отливок из жаропрочных сплавов используют затравки из того же жаропрочного никелевого сплава или из чистого никеля, как в патентах США N 3915761, 3857436, 4580613; a.c. СССР N 462393 и др.

Однако в этих случаях требуются сложные устройства, предохраняющие затравку от преждевременного ее расплавления и для создания необходимого температурного градиента на ней.

Наиболее близким по технической сущности к заявляемому является никелевый сплав для затравки по патенту РФ N 2021877, принятый нами за прототип.

Согласно прототипу для получения монокристаллических изделий из жаропрочных сплавов используют тугоплавкую затравку из сплава Ni-(5-20%)W, имеющего температуру плавления на 20-170oC выше, чем температура плавления сплава отливки.

Основным недостатком этого прототипа является то, что максимальные температуры плавления системы Ni-W ~ 1500-1510oC, в то время как максимальные рабочие температуры для получения монокристальных отливок находятся в диапазоне 1500-1580oC, что создает трудности в сохранении затравок без расплавления и дополнительно требует предохранять торцевую ее поверхность от образования окисной пленки нанесением слоя защитного покрытия.

Сплавы для затравок могут быть выплавлены в открытых индукционных печах. Способ выплавки включает загрузку шихты, ее расплавление, раскисление и слив металла (a. c. СССР N 372916). Данный способ выплавки сплава в открытых индукционных печах не позволяет получать сплав высокого качества. Раскисление кальцием малоэффективно, поскольку на воздухе последний окисляется на поверхности расплава.

За прототип нами принят способ выплавки жаропрочного никелевого сплава для затравок в вакуумной индукционной печи. (Окороков, Шалимов "Производство стали и сплавов в вакуумных индукционных печах", Металлургия, 1972 г.).

Процесс плавки включает загрузку шихты, ее расплавление под вакуумом, раскисление расплава углеродом, рафинирование расплава от примесей и слив металла. Для быстрого и равномерного распределения легирующих элементов в объеме металла применяют электромагнитное перемешивание.

Однако рассмотренный способ не может быть использован для выплавки сплавов на Ni-основе с повышенным содержанием тугоплавких элементов. Это связано с тем, что известная технология не регламентирует температурный режим плавки, который гарантировал бы эффективную гомогенизацию расплава, содержащего значительное количество тугоплавких металлов, температура плавления которых значительно выше температуры плавления никеля. В результате не происходит полного их растворения, и часть металлов остается после слива в плавильном тигле.

Технической задачей данного изобретения является разработка нового сплава на никелевой основе для монокристаллических затравок, имеющего повышенную температуру плавления, и способа его выплавки, обеспечивающего полную гомогенизацию сплава и его высокое качество, что позволит повысить выход годного при литье монокристаллических лопаток по макроструктуре.

Поставленная цель достигается тем, что предложен сплав, имеющий химсостав при следующем соотношении компонентов, мас.%:

Один элемент из группы, включающей рений и родий - 25-50

Иттрий - 0,001-0,100

Никель - Остальное

Из химических элементов, повышающих температуру плавления никеля, до настоящего времени использовали только W в чистом виде или W с добавками Mo и Cr. Однако введение одного элемента из группы рений и родий (25-50%) с добавками иттрия позволит повысить температуру плавления сплава выше 1600oC, что превысит рабочие температуры процесса при получении монокристаллов жаропрочных сплавов, а это в свою очередь исключит возможность расплавления затравок независимо от местоположения формы с затравкой в нагревателе.

Передача монокристаллической структуры и кристаллографической ориентации от затравки к отливке происходит при этом не за счет расплавления части затравки, а за счет растворения торцевой части затравки заливаемым в форму расплавом.

При введении в сплав одного элемента из группы Re (Re) в количестве менее 25% температура плавления сплава снижается до значений ниже 1520oC, т.е. до уровня сплава из Ni-W.

Введение в сплав одного из указанных тугоплавких элементов в количестве, превышающем 50%, нецелесообразно из-за удорожания сплава; из-за того, что температура плавления полученного затравочного сплава (свыше 2500oC) значительно превысит максимальные рабочие температуры процесса литья монокристаллов из жаропрочных сплавов, в том числе и максимально возможные температуры нагрева керамических форм и стержней; а также из-за повышения несоответствия между кристаллическими решетками сплавов затравки и отливки. Последнее приведет к затруднению передачи ориентации от затравки в отливку и снижению выхода годного.

Способ получения предложенного сплава включает следующие операции: загрузку шихты, состоящей из никеля и рения (или родия), ее расплавление в вакуумной индукционной печи, проведение двух-четырехразового термоциклирования расплава до температуры 1660-1780oC при подаче максимальной мощности на индуктор, выдержку расплава при этой температуре, охлаждение расплава до температуры 1630-1650oC и одновременное электромагнитное перемешивание расплава, а затем разливку металла. При этом соотношение продолжительности периодов нагрева и выдержки расплава к периоду охлаждения и перемешивания в цикле равно (2-3) : (1- 1,5). За 1-10 мин до начала разливки расплав раскисляют иттрием.

Сплавы, предназначенные для изготовления затравок для отливки монокристаллических лопаток, должны быть полностью гомогенными по составу и иметь низкое содержание неметаллических включений, прежде всего оксидов. Однако получение гомогенного металла при сплавлении рения (или родия), имеющего температуру плавления 3340oC (1966oC - для Rh) и удельный вес - 20,9 г/см3 (12,4 г/см3 - у Rh) с никелем, температура плавления которого равна 1455oC и удельный вес 8,90 г/см3, является довольно сложной задачей. В связи с этим для проведения эффективной гомогенизации и раскисления металла необходим правильный выбор температурного режима плавки и перемешивания.

Нагрев металла до температуры менее 1660oC не позволяет полностью расплавить и растворить рений (родий) в расплаве. Нагрев металла свыше 1780oC не приводит к улучшению растворения и распределения рения (родия) в расплаве, однако при этом возможно взаимодействие расплава с керамической футеровкой тигля и загрязнение металла неметаллическими включениями.

Нагрев металла до температуры 1660 - 1780oC и последующая выдержка способствуют полному растворению рения (родия) в расплаве. Последующее перемешивание металла позволяет выравнить концентрацию рения (родия) по высоте жидкой ванны. Отключение подогрева металла, находящегося в тигле печи в период перемешивания, позволяет уменьшить взаимодействие расплава с керамической футеровкой тигля и предотвратить засорение металла неметаллическими включениями.

Соотношение продолжительности периода нагрева и выдержки расплава к периоду охлаждения и перемешивания в цикле должно составлять (2-3) : (1-1,5). При большем соотношении не удается обеспечить удовлетворительного усреднения расплава, поскольку основное количество рения (родия) остается в нижней части тигля. При этом температура расплава смещается в область очень высоких температур, в результате чего имеет место взаимодействие расплава с футеровкой тигля и загрязнение неметаллическими включениями. При меньшем соотношении дальнейшего усреднения расплава не происходит, температура расплава смещается в область очень низких температур, жидкотекучесть (вязкость) расплава снижается и условия усреднения расплава заметно ухудшаются. Оптимальное количество циклов составляет от 2 до 4.

Перед сливом расплав раскисляют иттрием, который вводят в расплав за 1-10 мин до начала разливки, при этом остаточное содержание иттрия в металле должно быть в пределах 0,001-0,100%. При введении иттрия менее чем за 1 мин до слива процесс раскисления расплава не успевает закончиться и в готовом расплаве наблюдается повышенное содержание неметаллических включений. При введении иттрия более чем за 10 мин до начала разливки имеет место вторичное окисление расплава, поскольку иттрий взаимодействует с керамическим материалом тигля.

Пример

Сплав на никелевой основе для монокристаллических затравок с расчетным содержанием рения в сплаве 33% выплавляли в вакуумной индукционной печи в тигле емкостью 100 кг. На дно тигля загрузили часть никеля, затем послойно загрузили рений и остальной никель. При плавке поддерживали вакуум в печи не свыше 4сплав на никелевой основе для монокристаллических затравок   и способ его выплавки, патент № 215878110-2 мм рт.ст. После расплавления шихты и нагрева металла до температуры 1660oC в течение 6 мин приступали к гомогенизирующей обработке (термоциклированию) расплава. Для этого металл выдерживали при указанной температуре в течение 4 мин, затем отключали мощность и через 2 мин включали электромагнитное перемешивание на 3 мин. Температура расплава после окончания перемешивания составляла 1630oC. Всего провели 3 таких цикла. В конце последнего цикла за 5 мин до начала разливки металла в расплав добавили раскислитель - иттрий в виде лигатуры никель-иттрий. После окончания процесса раскисления приступили к сливу металла в чугунные кокили.

В табл. 1 приведен химсостав предлагаемого сплава для затравок при различном соотношении компонентов.

В табл. 2 приведены различные технологические параметры выплавки некоторых сплавов для монокристаллических затравок из табл. 1. Для оценки качества сплава исследовали металл из первого и последнего кокилей на содержание рения (родия) и кислорода.

Как видно из табл. 2, использование композиций согласно изобретению позволяет получить качественный гомогенный сплав по тугоплавким элементам и с низким содержанием кислорода (плавки 2, 3, 4, 8, 9). Для сравнения с предлагаемым способом приведена плавка 1, выплавленная в соответствии с прототипом. Видно, что плавка 1 не позволила получить качественную отливку (большой брак по химсоставу). Отклонение от предлагаемых параметров ведет к браку по содержанию рения (родия) (плавка 6) или к снижению качества металла вследствие загрязнения его кислородом (плавки 5, 7).

Использование изобретения позволит получать тугоплавкий никелевый сплав высокого качества для изготовления затравок. Применение затравок из никелевого сплава с повышенной температурой плавления расширит возможности технологического процесса, позволит повысить рабочие температуры при отливке монокристаллических лопаток ГТД и ГТУ заданной КГО, увеличит выход годного по макроструктуре на 7-10%.

Класс C22C19/03 никеля

дентальный внутрикостно-поднадкостничный имплантат и способ его установки -  патент 2529472 (27.09.2014)
листовая сталь для горячего штампования и способ изготовления горячештампованной детали с использованием листовой стали для горячего штампования -  патент 2520847 (27.06.2014)
сплав на основе никеля -  патент 2518814 (10.06.2014)
электротехническая листовая сталь с неориентированным зерном и способ ее изготовления -  патент 2471013 (27.12.2012)
способ изготовления композитного материала из сплавов на основе никелида титана -  патент 2465016 (27.10.2012)
способ изготовления биаксиально текстурированной подложки из бинарного сплава на основе никеля для эпитаксиального нанесения на нее буферного и высокотемпературного сверхпроводящего слоев для ленточных сверхпроводников -  патент 2451766 (27.05.2012)
модификатор для никелевых сплавов -  патент 2447175 (10.04.2012)
способ получения ультрадисперсного порошка сплава никеля и рения -  патент 2445384 (20.03.2012)
способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе -  патент 2426810 (20.08.2011)
сплав -  патент 2426809 (20.08.2011)

Класс C22C30/00 Сплавы, содержащие менее 50% по массе каждого компонента

способ термической обработки монокристаллов ферромагнитного сплава fe-ni-co-al-ti с эффектом памяти формы и сверхэластичностью, ориентированных вдоль [001] направления при деформации растяжением -  патент 2524888 (10.08.2014)
способ изготовления материала для дугогасительных и разрывных электрических контактов и материал -  патент 2522584 (20.07.2014)
сплав на основе никеля -  патент 2515794 (20.05.2014)
сплав для постоянных магнитов -  патент 2510422 (27.03.2014)
активный материал отрицательного электрода на основе кремниевого сплава для электрического устройства -  патент 2508579 (27.02.2014)
пригодный для сварки, жаропрочный, стойкий к окислению сплав -  патент 2507290 (20.02.2014)
гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов -  патент 2500827 (10.12.2013)
аустенитный сварочный материал и способ профилактического технического обслуживания для предотвращения коррозионного растрескивания под напряжением и способ профилактического технического обслуживания для предотвращения межкристаллитной коррозии с его использованием -  патент 2488471 (27.07.2013)
жаропрочный хромоникелевый сплав с аустенитной структурой -  патент 2485200 (20.06.2013)
износостойкий сплав для высокотемпературных применений -  патент 2479658 (20.04.2013)

Класс C22C1/02 плавлением 

Наверх