способ гидрирования ацетиленовых спиртов

Классы МПК:C07C33/02 ациклические спирты с углерод-углеродными двойными связями 
C07C29/17 гидрированием углерод-углеродных двойных или тройных связей
B01J31/06 содержащие полимеры
B01J23/44 палладий
Автор(ы):, , , , , , , , , ,
Патентообладатель(и):Институт элементоорганических соединений им.А.Н.Несмеянова РАН,
Тверской государственный технический университет
Приоритеты:
подача заявки:
1998-06-24
публикация патента:

Изобретение относится к органической химии, а именно к способам гидрирования ацетиленовых спиртов, являющихся промежуточными органическими соединениями, используемыми в фармацевтической и парфюмерной промышленности, с высоким выходом и высокой приведенной скоростью. Избирательное гидрирование ацетиленовых спиртов до получения соответствующих этиленовых спиртов ведется водородом при концентрации ацетиленового спирта от 0,22 до 0,88 моль/л, при 60 - 90oC, с использованием мицеллярного палладийсодержащего катализатора в количестве от 1,66 до 6,66 г/л, полученного иммобилизацией ацетата палладия на полистирол-поли-4-винилпиридиновом блок-сополимере, восстановлением иммобилизованного Pd(II) до Pd(0), нанесением полученных наночастиц палладия на окись алюминия с обработкой ультразвуком с интенсивностью 2,5 - 3 Вт/см2, частотой 22 кГц в течение 1 - 4 мин. 1 з.п. ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Способ избирательного гидрирования ацетиленовых спиртов до получения соответствующих этиленовых спиртов водородом при повышенной температуре на предварительно подготовленном палладиевом катализаторе, отличающийся тем, что реакцию проводят при концентрации ацетиленового спирта 0,22 - 0,88 моль/л и температуре 60 - 90oC, с использованием в качестве катализатора мицеллярного палладийсодержащего полимерного катализатора в количестве от 1,66 до 6,66 г/л, полученного иммобилизацией ацетата палладия на полистирол-поли-4-винилпиридиновом блок-сополимере, восстановлением иммобилизованного Pd (II) до Pd (0), нанесением полученных наночастиц палладия на окись алюминия с обработкой ультразвуком.

2. Способ гидрирования ацетиленовых спиртов по п.1, отличающийся тем, что катализатор обрабатывают ультразвуком с интенсивностью 2,5 - 3 Вт/см2, частотой 22 кГц в течение 1 - 4 мин.

Описание изобретения к патенту

Изобретение относится к органической химии, а именно к способам гидрирования ацетиленовых спиртов, являющихся промежуточными органическими соединениями, используемыми в фармацевтической и парфюмерной промышленности.

Тройная связь ацетиленовых спиртов:

способ гидрирования ацетиленовых спиртов, патент № 2144020

где R - H (3-бутин-2-ол, C4H6O);

- CH3 (2-метил-3-бутин-2-ол, C5H8O);

- CH3-CH2 (3-метил-1-пентин-3-ол, C6H10O);

способ гидрирования ацетиленовых спиртов, патент № 2144020

способ гидрирования ацетиленовых спиртов, патент № 2144020

способ гидрирования ацетиленовых спиртов, патент № 2144020

и т.п. гидрируется на Pd содержащих катализаторах.

Известен способ гидрирования ацетиленового спирта на 5% Pd/CaCo3 при 293-308 K и давлении водорода 0.101 - 0.303 МПа. Реакция прерывалась после поглощения теоретически рассчитанного количества водорода, когда проба на ацетиленовую связь (с аммиачным раствором окиси серебра или меди) была отрицательной. Выход этиленового спирта при этом составлял 95% (Пак А.М., Сокольский Д. В. Селективное гидрирование непредельных оксосоединений. - Алма-Ата: Наука. - 1983. - С. 177-178.).

Недостатком этого способа является низкая селективность процесса, так как после гидрирования тройной связи до двойной идет дальнейшее гидрирование до предельной связи. Кроме того к недостаткам следует отнести значительное содержание Pd в катализаторе, используемом в процессе, что приводит к его удорожанию.

Наиболее близким по технической сущности является способ селективного гидрирования ацетиленового спирта на 0.5% Pd/Al2O3, обработанном раствором ацетата цинка при кипячении Zn/Pd= 3: 1 и модифицированным органическими (пиридин) и неорганическими (КОН) основаниями. Эксперименты осуществлялись в кинетической области. В опытах варьировались: концентрация ацетиленового спирта от 0,43 до 1,1 моль/л, количество катализатора от 1,66 до 13,3 г/л, температура гидрирования от 30 до 65oC, парциальное давление от 0,04 до 6 МПа (Матвеева В.Г., Сульман Э.М., Анкудинова Т.В. Селективное гидрирование 3,7-диметилоктаен-6-ин-1-ола-3 // Хим.- фарм. ж. - 1994. - N 1.- С. 46-49).

Недостатками этого способа являются сложный процесс модификации катализатора гидрирования, включающий использование в качестве модификаторов высокотоксичных веществ, а также недостаточно высокая приведенная скорость гидрирования.

Задачей изобретения является разработка условий проведения процесса гидрирования ацетиленовых спиртов в присутствии палладийсодержащих полимерных соединений на основе полистирол-поли-4-винилпиридинового блок-сополимера.

Технический результат изобретения - гидрирование ацетиленовых спиртов с высоким выходом, получаемых веществ при сокращении времени гидрирования.

Технический результат достигается тем, что способ гидрирования ацетиленовых спиртов осуществляют при повышенной температуре на предварительно подготовленном палладиевом катализаторе, при этом реакцию гидрирования проводят при концентрации ацетиленового спирта 0.22 - 0.88 мол/л, температуре 60-90oC с использованием гетерогенного мицеллярного палладийсодержащего полимерного катализатора в количестве 1.66 - 6.66 г/л, нанесенного на окись алюминия и предварительно обработанного ультразвуком. При этом катализатор обрабатывают ультразвуком с интенсивностью 2.5-3 Вт/см2, частотой 22 кГц в течение 1 - 4 мин. Содержание палладия в полимерном палладийсодержащем катализаторе, нанесенном на окись алюминия, составляет 0.03 - 0.1%.

Мицеллярный палладийсодержащий полимерный катализатор синтезируют путем иммобилизации ацетата палладия [Pd(CH3COO)2] на полистирол-поли-4-винилпиридиновом блок-сополимере (на его поли-4-винилпиридиновой фазе, содержащейся в количестве 34%). Процесс иммобилизации ацетата палладия на блок-сополимере осуществляют в растворе.

В трехгорлую колбу, снабженную мешалкой и обратным холодильником, загружают навеску блок-сополимера (0.72 г) и толуол (100 мл, плотность 0.8670 г/см3). Интенсивно перемешивают до полного растворения навески полимера. Затем к полученному раствору блок-сополимера добавляют ацетат палладия (навеска 0.18 г). Введение ацетата палладия в ядра блок-сополимерных мицелл осуществляют на воздухе и при комнатной температуре во избежание преждевременного восстановления Pd(II) до Pd(0) 4-винилпиридиновыми звеньями. Реакцию проводят в течение 4 часов до растворения соли палладия.

После иммобилизации палладия на полистирол-поли-4-винилпиридиновом блок-сополимере проводят восстановление Pd(II) до Pd(0) боргидридом натрия (NaBH4). С этой целью раствор полимера продувают аргоном в течение 30 минут, а затем приливают 0.5 М раствор боргидрида натрия в диметиловом эфире диэтиленгликоля (диглиме) (3.2 мл, плотность 0.945 г/см3). Процесс ведут при перемешивании в течение 15 минут.

Нанесение полученных наночастиц палладия, стабилизированных в блок-сополимерных мицеллах на окись алюминия, производят следующим образом. Окись алюминия в количестве 157.5 г (на 100 мл раствора палладийсодержащего полимера) прокаливают в муфельной печи при 320oC в течение 2.5 часов. Затем окись алюминия охлаждают до комнатной температуры в вакуум-эксикаторе. После этого в стеклянный бюкс емкостью 150 мл наливают раствор палладийсодержащего катализатора и добавляют 157.5 г окиси алюминия (на 100 мл раствора полимера). Перемешивая содержимое бюкса (вручную), полученную композицию выдерживают 1 час, после чего бюкс закрывают. Окончательное нанесение происходит при комнатной температуре в течение 2 дней. Затем катализатор отфильтровывают, пять раз промывают петролейным эфиром (120 мл) и сушат в вакуум-шкафу 3 часа при 50oC и остаточном давлении 20 мм рт. ст. Содержание активной фазы (палладия) - 0.03 - 0.1%. Катализатор хранят при комнатной температуре в бюксах.

Полученный катализатор - мелкодисперсный (с гранулометрическим составом от 15 до 25 мкм), он имеет светло-серый цвет. Его предварительную обработку ультразвуком ведут в течение 1 - 4 минут, с использованием ультразвукового воздействия с частотой 22 кГц и интенсивностью 2.5-3 Вт/см2 в толуоле с помощью конической насадки ультразвукового излучателя. При этом увеличение времени ультразвуковой обработки катализатора, также как и при увеличении ее интенсивности приводит к уменьшению его активности или к полному разрушению, а уменьшение этих параметров влечет за собой недостижение цели активации катализатора и значительно снижает его технологичность.

Каталитическое действие полученных контактов изучают на установке гидрирования в реакторе интенсивного перемешивания в периодических условиях. Анализ катализата проводят методом газо-жидкостной хроматографии на приборе CHROM-5 с использованием пламенно-ионизационного детектора. При уменьшении температуры проведения процесса гидрирования ниже 60oC происходит замедление химической реакции. При увеличении концентрации ацетиленового спирта и уменьшении концентрации катализатора в реакционной смеси также происходит замедление процесса гидрирования, а при обратном изменении соотношения концентраций катализатора и ацетиленового спирта увеличивается содержание трудноотделимых побочных продуктов в катализате. В случае увеличения температуры более 90oC также увеличивается содержание трудноотделимых побочных продуктов. Применение для процесса других каталитических систем возможно (например: Pd/CaCO3, Pd/Al2O3), однако в случае их использования не удается достичь достаточно высокой приведенной скорости процесса.

Способ гидрирования ацетиленовых спиртов, включающий проведение процесса при температуре 60 - 90oC с объемом реакционной смеси 3 способ гидрирования ацетиленовых спиртов, патент № 2144020 10-5 м3 при варьировании количества катализатора от 1.66 до 6.66 г/л и ацетиленового спирта от 0.22 до 0.88 моль/л, с использованием мицеллярного палладийсодержащего полимерного катализатора, нанесенного на окись алюминия, предварительно обработанного ультразвуком с интенсивностью 2.5-3 Вт/см2, частотой 22 кГц в течение 1 - 4 мин, является новым, по сравнению с прототипом.

Проведение процесса каталитического гидрирования ацетиленовых спиртов при описанных условиях позволяет получать конечный продукт высокой степени чистоты с высокой приведенной скоростью (за более короткое время), что связано с мицеллярным строением катализатора.

Для пояснения способа гидрирования ацетиленовых спиртов приведены чертежи, где на фиг. 1 изображена схема синтеза мицеллярного палладийсодержащего полимерного катализатора, на фиг. 2 представлена схема образования мицеллы палладийсодержащего полимерного катализатора, на фиг. 3 показана установка для ультразвуковой обработки катализатора, а на фиг. 4. - установка для проведения процесса гидрирования (общий вид).

Установка для ультразвуковой обработки катализатора состоит из ультразвукового генератора 1 (УЗДН А), соединенного кабелем 2 с ультразвуковым излучателем 3. На ультразвуковом излучателе 3 устанавливают коническую насадку 4, которую погружают в химический стаканчик 5 с катализатором, находящимся в толуоле.

Обработка производится следующим образом: настраивается ультразвуковой генератор 1 по времени и по интенсивности ультразвукового воздействия, навеску катализатора (0.1 г) насыпают в химический стаканчик 5 и заливают 30 мл толуола, после чего в стаканчик 5 помещают коническую насадку ультразвукового излучателя 4 и включают генератор 1.

Установка гидрирования состоит из реактора интенсивного перемешивания 6, качательное движение на который передается от электродвигателя 7 через кривошипно-шатунный механизм 8. Реактор 6 термостатируется водой, подаваемой с термостата 9. В реактор 6 через штуцер 10 загружаются реагенты, а через штуцер 11 поступает водород из баллона 12. Измерение количества поступающего водорода производится измерительной бюреткой 13, в которую поступает вода из бутыли 14.

Процесс гидрирования ацетиленовых спиртов осуществляется следующим образом: реактор 6 термостатируется до температуры от 60 до 90oC. Затем через штуцер 10 в него загружается половина объема растворителя и необходимое количество катализатора. После этого реактор трижды продувается водородом, герметизируется и в течение часа катализатор насыщается водородом. По истечении этого времени в реактор 6 через штуцер 10 загружается ацетиленовый спирт и остальная часть растворителя, реактор трижды продувается водородом и герметизируется, запускается двигатель 7 и проводится процесс гидрирования. Количество поглощенного водорода измеряется по измерительной бюретке 13.

Пример N1 гидрирование ацетиленового спирта C10H16O (3,7-диметил-6-октен-1-ин-3-ол).

Брутто-формула ацетиленового спирта C10H16O:

способ гидрирования ацетиленовых спиртов, патент № 2144020

Катализатор обрабатывают ультразвуком с частотой 22 кГц и интенсивностью 2.5 Вт/см2 в течение 2 минут. Реактор 6 термостатируют при температуре 60oC. Затем через штуцер 10 в него загружают половину объема растворителя и 6.66 г/л катализатора. После этого реактор трижды продувают водородом, герметизируют и в течение часа катализатор насыщают водородом. По истечении этого времени в реактор 6 через штуцер 10 загружают 0.55 моль/л ацетиленового спирта и остальную часть растворителя, реактор трижды продувают водородом и герметизируют, запускают двигатель 7 и проводят процесс гидрирования. Количество поглощенного водорода измеряют по измерительной бюретке 13. Конверсия ацетиленового спирта составляет 97.8%. Приведенная скорость, рассчитанная на момент поглощения 20% водорода - 0.23 м3H2/(гPdспособ гидрирования ацетиленовых спиртов, патент № 2144020мольспособ гидрирования ацетиленовых спиртов, патент № 2144020с). Продуктом реакции является этиленовый спирт C10H18O (3,7-диметил-1,6-октадиен-3-ол).

Пример N2 гидрирование ацетиленового спирта C10H16O (3,7-диметил-6-октен-1-ин-3-ол).

Брутто-формула ацетиленового спирта C10H16O:

способ гидрирования ацетиленовых спиртов, патент № 2144020

Катализатор обрабатывают ультразвуком с частотой 22 кГц и интенсивностью 3 Вт/см2 в течение 3 минут. Реактор 6 термостатируют при температуре 90oC. Затем через штуцер 10 в него загружают половину объема растворителя и 3.33 г/л катализатора. После этого реактор трижды продувают водородом, герметизируют и в течение часа катализатор насыщают водородом. По истечении этого времени в реактор 6 через штуцер 10 загружается 0.44 моль/л ацетиленового спирта и остальная часть растворителя, реактор трижды продувают водородом и герметизируют, запускают двигатель 7 и проводят процесс гидрирования. Количество поглощенного водорода измеряют по измерительной бюретке 13. Конверсия ацетиленового спирта составляет 99.8%. Приведенная скорость, рассчитанная на момент поглощения 20% водорода - 0.55 м3H2/(гPdспособ гидрирования ацетиленовых спиртов, патент № 2144020мольспособ гидрирования ацетиленовых спиртов, патент № 2144020с). Продуктом реакции является этиленовый спирт C10H18O (3,7-диметил-1,6-октадиен-3-ол).

Пример N3 гидрирование ацетиленового спирта C20H38O (3,7,11,15-тетраметил-1-гексадецин-3-ол).

Брутто-формула ацетиленового спирта C20H38O:

способ гидрирования ацетиленовых спиртов, патент № 2144020

Катализатор обрабатывают ультразвуком с частотой 22 кГц и интенсивностью 3 Вт/см2 в течение 1 минуты. Реактор 6 термостатируют при температуре 90oC. Затем через штуцер 10 в него загружается половина объема растворителя и 2.5 г/л катализатора. После этого реактор трижды продувают водородом, герметизируют и в течение часа катализатор насыщают водородом. По истечении этого времени в реактор 6 через штуцер 10 загружается 0.34 моль/л ацетиленового спирта и остальная часть растворителя, реактор трижды продувают водородом и герметизируют, запускают двигатель 7 и проводят процесс гидрирования. Количество поглощенного водорода измеряют по измерительной бюретке 13. Конверсия ацетиленового спирта составляет 98%. Приведенная скорость, рассчитанная на момент поглощения 20% водорода - 0.25 м3H2/(гPdспособ гидрирования ацетиленовых спиртов, патент № 2144020мольспособ гидрирования ацетиленовых спиртов, патент № 2144020с). Продуктом реакции является этиленовый спирт C20H40O (3,7,11,15-тетраметил-1-гексадецен-3-ол).

Пример N4 гидрирование ацетиленового спирта C20H38O (3,7,11,15-тетраметил-1-гексадецин-3-ол).

Брутто-формула ацетиленового спирта C20H38O:

способ гидрирования ацетиленовых спиртов, патент № 2144020

Катализатор обрабатывают ультразвуком с частотой 22 кГц и интенсивностью 3 Вт/см2 в течение 2 минут. Реактор 6 термостатируют при температуре 80oC. Затем через штуцер 10 в него загружают половину объема растворителя и 3.33 г/л катализатора. После этого реактор трижды продувают водородом, герметизируют и в течение часа катализатор насыщается водородом. По истечении этого времени в реактор 6 через штуцер 10 загружается 0.31 моль/л ацетиленового спирта и остальная часть растворителя, реактор трижды продувают водородом и герметизируют, запускают двигатель 7 и проводят процесс гидрирования. Количество поглощенного водорода измеряют по измерительной бюретке 13. Конверсия ацетиленового спирта составляет 97.8%. Приведенная скорость, рассчитанная на момент поглощения 20% водорода - 0.21 м3H2/(гPdспособ гидрирования ацетиленовых спиртов, патент № 2144020мольспособ гидрирования ацетиленовых спиртов, патент № 2144020с). Продуктом реакции является этиленовый спирт C20H40O (3,7,11,15-тетраметил-1-гексадецен-3-ол).

Пример N5 гидрирование ацетиленового спирта C5H8O (2-метил-3-бутин-2-ол).

Брутто-формула ацетиленового спирта C5H8O:

способ гидрирования ацетиленовых спиртов, патент № 2144020

Катализатор обрабатывают ультразвуком с частотой 22 кГц и интенсивностью 2.5 Вт/см2 в течение 1 минуты. Реактор 6 термостатируют при температуре 90oC. Затем через штуцер 10 в него загружают половину объема растворителя и 3.33 г/л катализатора. После этого реактор трижды продувают водородом, герметизируют и в течение часа катализатор насыщается водородом. По истечении этого времени в реактор 6 через штуцер 10 загружают 0.40 моль/л ацетиленового спирта и остальную часть растворителя, реактор трижды продувают водородом и герметизируют, запускают двигатель 7 и проводят процесс гидрирования. Количество поглощенного водорода измеряют по измерительной бюретке 13. Конверсия ацетиленового спирта составляет 99%. Приведенная скорость, рассчитанная на момент поглощения 20% водорода - 0.42 м3H2/(гPdспособ гидрирования ацетиленовых спиртов, патент № 2144020мольспособ гидрирования ацетиленовых спиртов, патент № 2144020с). Продуктом реакции является этиленовый спирт C5H10O (2-метил-3-бутен-2-ол).

Предлагаемый способ можно широко применять в производстве витаминов и душистых веществ, когда в него входит стадия гидрирования ацетиленовых спиртов, с хорошим выходом и высокой приведенной скоростью.

Класс C07C33/02 ациклические спирты с углерод-углеродными двойными связями 

новые липидные соединения -  патент 2509071 (10.03.2014)
конъюгированные липидные производные -  патент 2480447 (27.04.2013)
способ получения полипренолов -  патент 2420505 (10.06.2011)
способ получения полипренолов -  патент 2317972 (27.02.2008)
способ получения полипренолов -  патент 2259991 (10.09.2005)
способ получения линалоола -  патент 2215731 (10.11.2003)
способ получения окта-2,7-диен-1-ола -  патент 2120432 (20.10.1998)
способ получения линалоола -  патент 2118953 (20.09.1998)
способ получения смеси полипренолов -  патент 2053992 (10.02.1996)

Класс C07C29/17 гидрированием углерод-углеродных двойных или тройных связей

Класс B01J31/06 содержащие полимеры

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
твердый катализатор, используемый для превращения алкиленоксида в алкиленгликоль -  патент 2470706 (27.12.2012)
катализатор для олигомеризации альфа-олефинов, способ его получения и способ олигомеризации альфа-олефинов -  патент 2462310 (27.09.2012)
способ переэтерификации -  патент 2452725 (10.06.2012)
экструдаты неорганических оксидов -  патент 2451545 (27.05.2012)
способ биохимической очистки сточных вод -  патент 2448056 (20.04.2012)
катализатор на углеродной основе для десульфуризации дымовых газов, и способ его получения, и его использование для удаления ртути в дымовых газах -  патент 2447936 (20.04.2012)
способ удаления йодидного соединения из органической кислоты -  патент 2440968 (27.01.2012)
нанокатализатор на основе переходного металла, способ его приготовления и использование в реакции синтеза фишера-тропша -  патент 2430780 (10.10.2011)
способ получения катализатора отверждения -  патент 2424848 (27.07.2011)

Класс B01J23/44 палладий

способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
выхлопная система для двигателя внутреннего сгорания, работающего на бедной смеси, содержащая катализатор на основе сплава pd-au -  патент 2506988 (20.02.2014)
способ получения н-гептадекана гидродеоксигенированием стеариновой кислоты -  патент 2503649 (10.01.2014)
катализатор сжигания водорода, способ его получения и способ сжигания водорода -  патент 2494811 (10.10.2013)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
способ очистки сульфатного скипидара от сернистых соединений -  патент 2485154 (20.06.2013)
способ получения гетерогенного катализатора для получения ценных и энергетически насыщенных компонентов бензинов -  патент 2482917 (27.05.2013)
способ получения оксида палладия(ii) на поверхности носителя -  патент 2482065 (20.05.2013)
Наверх