способ получения углеродного сорбента

Классы МПК:C01B31/08 активированный уголь 
B01J20/20 содержащие свободный углерод; содержащие углерод, полученный процессами коксования
Автор(ы):, , , , , , ,
Патентообладатель(и):Санкт-Петербургский государственный университет технологии и дизайна
Приоритеты:
подача заявки:
1998-07-29
публикация патента:

Изобретение относится к получению углеродных сорбентов на основе целлюлозы, используемых в процессах очистки воды для улавливания тяжелых металлов, органических соединений, в том числе красителей. Целлюлозный материал подвергают двухстадийной термообработке: на первой стадии термообработку проводят при 300-350oC в течение 180-210 мин, затем материал постепенно охлаждают до 20°С в течение 90-120 мин. После чего проводят вторую стадию термообработки при 700-720oC в течение 120-150 мин. Техническим результатом заявляемого изобретения является упрощение процесса получения углеродного сорбента (отсутствие активатора и защитной среды процесса, сокращение его продолжительности) при одновременном повышении выхода готовой продукции и сохранении высокой сорбционной активности углеродного сорбента. 1 табл.
Рисунок 1

Формула изобретения

Способ получения углеродного сорбента, заключающийся в двухстадийной тормообработке целлюлозного материала, отличающийся тем, что целлюлозный материал на первой стадии подвергают термообработке при 300-350oC в течение 180-210 мин, затем его постепенно охлаждают до 20oC в течение 90-120 мин, после чего подвергают вторичной термообработке при 700-720oC в течение 120-150 мин.

Описание изобретения к патенту

Изобретение относится к области получения углеродных сорбентов на основе целлюлозы, используемых в процессах очистки воды для улавливания тяжелых металлов, органических соединений, в том числе красителей.

В уровне техники /1,2/ известно получение углеродных сорбентов по традиционной технологии, включающей две стадии термообработки целлюлозного сырья: карбонизация и активация. Карбонизация охватывает широкую область температур от 300 до 900oC и осуществляется в атмосфере инертных газов. Активация происходит при температуре 600 - 2000oC в атмосфере окислительного газа, например CO2, водяного пара, солей цинка, калия и др.

Недостатками традиционных способов получения углеродных сорбентов является длительность процесса, использование активатора и защитной среды процесса, а также низкий выход готового продукта. Все это при большой стоимости энергозатрат, активаторов и защитных сред приводит к повышению стоимости конечного продукта.

Обычно эти недостатки стремятся устранить в рамках существующих технологий за счет усовершенствования отдельных стадий производственного процесса: введение катализаторов на стадии карбонизации, применение в качестве защитной среды органических веществ, вакуума - на стадии активации. Однако наиболее полное устранение недостатков возможно с применением новых технологических решений для получения углеродных сорбентов.

Полученные по традиционной технологии углеродные сорбенты на основе целлюлозного сырья имеют широкий спектр применения. Однако большинство решений посвящено применению углеродных сорбентов для очистки газов /2,3/. Перспективными путями применения углеродных сорбентов считаются также процессы очистки жидких сред. Однако в уровне техники представлены углеродные сорбенты либо только для очистки жидких сред от различных металлов, либо только для очистки от органических соединений, например красителей.

Наиболее близким техническим решением к заявляемому является способ получения углеродного сорбента из целлюлозного материала (костра льна), используемого для очистки питьевой воды и осветления технологических растворов /4/, по которому сорбент получают традиционно в 2 стадии: карбонизация при 500 - 900oC со скоростью подъема температуры 5 град/мин (т.е. время выхода на режим карбонизации составляет 100-180 мин) и активация при 900oC в среде водяного пара и постоянной подаче азота. Углеродный сорбент с оптимальными свойствами (сорбционная емкость по метиленовому голубому 285 мг/г) был получен при карбонизации при 550oC и степени активации (потере массы) - 60%. Недостатками способа получения углеродного сорбента по прототипу являются длительность процесса (только время выхода на режим карбонизации составляет 100-180 мин), использование активатора (водяной пар) и защитной среды процесса (азот), а также выход готового продукта (по прототипу оптимальный результат, т. е. сорбционная емкость по метиленовому голубому 285 мг/г, был достигнут при степени активации (потере массы) 60%. Для заявляемого углеродного сорбента сорбционная емкость по метиленовому голубому 290 мг/г достигается при степени активации (потере массы) 27%, т.е. выход готового продукта по прототипу значительно ниже).

Техническим результатом заявляемого изобретения является упрощение процесса получения углеродного сорбента (отсутствие активатора и защитной среды процесса, сокращение его продолжительности) при одновременном повышении выхода готовой продукции и сохранении высокой сорбционной активности углеродного сорбента.

Технический результат достигается за счет того, что целлюлозный материал подвергают двухстадийной термообработке: на первой стадии термообработку проводят при 300 - 350oC в течение 180-210 минут, затем материал постепенно охлаждают до 20oC в течение 90-120 минут. После чего проводят вторую стадию термообработки при 700 - 720oC в течение 120 -150 минут.

Существенным отличием заявляемого изобретения является разработанный температурно-временной режим и последовательность проведения стадий процесса: термообработка - охлаждение -термообработка. Эти новые признаки позволяют упростить процесс, т. е. исключить использование активаторов и защитной среды, сократить время получения сорбента, что приводит к уменьшению энергозатрат, а следовательно, к удешевлению готового продукта. Кроме того, повышается выход готовой продукции и не снижается его сорбционная активность.

При подобранном температурном режиме на первой стадии термообработки происходит образование открытой пористой системы, которая сохраняется впоследствии путем резкого прекращения термообработки продукта карбонизации, т.е. введением промежуточной стадии охлаждения продукта. Увеличение открытой пористой структуры, сформированной на первой стадии термообработки и закрепленной на стадии охлаждения, происходит на второй стадии высокотемпературной термообработки.

Процесс получения углеродного сорбента проводился по следующей схеме.

Первая стадия термообработки: Исходный целлюлозный материал в виде костры льна, находящийся в камере пиролиза при 20oC, помещают в блок пиролиза с температурой 300 - 350oC. Скорость прогрева материала в блоке пиролиза составляла 25 град/мин, т.е. материал до 300 - 350oC нагревался за 12-14 мин. Время выдержки целлюлозного материала при конечной температуре процесса составляло 180-210 минут.

После этого продукт карбонизации извлекали из блока пиролиза и постепенно охлаждали в камере пиролиза до 20oC в течение 90-120 минут.

Вторая стадия термообработки: камеру пиролиза с охлажденным продуктом пиролиза вновь помещали в блок пиролиза с температурой 700 - 720oC. Скорость прогрева материала в блоке пиролиза составляла 120 град/мин, т.е. материал до 700 - 720oC нагревался за 5-6 мин. Время выдержки материала при конечной температуре процесса составляло 120 -150 минут. После этого углеродный сорбент извлекался из блока пиролиза и постепенно остывал в камере пиролиза до 20oC.

Процесс проводили без защитной среды (азота, аргона), т.е. фактически в продуктах распада целлюлозы. Общая продолжительность процесса получения углеродного сорбента составляла 7 ч.-7 ч. 30 мин.

Результаты проведения процесса представлены в таблице.

Только совокупность всех параметров (температуры и продолжительности процесса на всех стадиях) позволяет упростить процесс получения углеродного сорбента, т.е. провести его без применения активатора и защитной среды. Изменение заявленных параметров влечет за собой удлинение процесса и ухудшение характеристик получаемого углеродного сорбента.

Уменьшение температуры термообработки на первой стадии менее 300oC нецелесообразно, т.к. уменьшается сорбционная емкость готового продукта по метиленовому голубому.

Увеличение температуры термообработки на первой стадии выше 350oC не имеет смысла, т. к. снижается выход продукта, а также сорбционная емкость по метиленовому голубому.

Уменьшение времени термообработки на первой стадии менее 180 минут приводит к незначительному повышению выхода готового продукта, но к значительному снижению сорбционной емкости по метиленовому голубому.

Увеличение времени термообработки на первой стадии свыше 210 минут не имеет смысла, т.к. приводит к понижению выхода готового продукта и сорбционной емкости по метиленовому голубому.

Увеличение температуры на второй стадии термообработки выше 720oC не имеет смысла, т.к. приводит к снижению выхода готового продукта и сорбционной емкости по метиленовому голубому, а кроме того, связано с увеличением энергозатрат.

Уменьшение температуры термообработки на второй стадии ниже 700oC приводит к повышению выхода готовой продукции, но сорбционная емкость готового продукта по метиленовому голубому снижается.

Увеличение времени термообработки на второй стадии более 150 минут нецелесообразно, т.к. приводит к уменьшению выхода готовой продукции и снижению сорбционной емкости по метиленовому голубому, а кроме того, связано с увеличение энергозатрат.

Уменьшение времени термообработки менее 120 минут приводит к снижению сорбционной емкости по метиленовому голубому.

Увеличение времени охлаждения продукта карбонизации более 120 минут нецелесообразно, т.к. не приводит к улучшению сорбционной емкости по метиленовому голубому.

Уменьшение времени охлаждения продукта карбонизации менее 90 мин также нецелесообразно, т. к. приводит к уменьшению сорбционной емкости по метиленовому голубому.

Список используемых источников

1. Конкин А.А. Углеродные и другие жаростойкие углеродные материалы. -М. : Химия, 1974. -376 с.

2. Получение, свойства и применение углеродных волокнистых сорбентов: Обзор. Информация: Л. И.Фридман, В.А.Перлин, В.В.Тарасова. - М.: НИИТЭХИМ, 1981. -27 с. -(Хим. пром-ть. Сер. Промышленность химических волокон).

3. Углеволокнистые адсорбенты: Обзор. Информация: Л.И.Фридман, В.А.Перлин, В.В.Тарасова. -М.: НИИТЭХИМ, 1987. -33 с. -(Хим. пром-ть. Сер.: Промышленность химических волокон).

4. Л. В. Емец и др. Сорбционно-активные углеродные материалы на основе льняной костры//Химические волокна, 1996, N6, с.20-22.

Класс C01B31/08 активированный уголь 

способ получения модифицированного активного угля -  патент 2529233 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
способ получения активного угля из растительных отходов -  патент 2527221 (27.08.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
способ получения активного угля на основе антрацита -  патент 2518964 (10.06.2014)
способ получения углеродного адсорбента -  патент 2518579 (10.06.2014)
магнитоуправляемый сорбент для удаления эндо- и экзотоксинов из организма человека -  патент 2516961 (20.05.2014)
способ дообработки питьевой воды -  патент 2510887 (10.04.2014)
способ получения хемосорбента -  патент 2510868 (10.04.2014)
способ получения активных углей из шихт коксохимического производства -  патент 2507153 (20.02.2014)

Класс B01J20/20 содержащие свободный углерод; содержащие углерод, полученный процессами коксования

способ получения углеродминерального сорбента -  патент 2529535 (27.09.2014)
способ получения углеродного адсорбента -  патент 2518579 (10.06.2014)
формованный сорбент внииту-1, способ его изготовления и способ профилактики гнойно-септических осложнений в акушерстве -  патент 2516878 (20.05.2014)
композиции на основе хлорида брома, предназначенные для удаления ртути из продуктов сгорания топлива -  патент 2515451 (10.05.2014)
сорбент для диализа -  патент 2514956 (10.05.2014)
спеченный неиспаряющийся геттер -  патент 2513563 (20.04.2014)
регенерируемый, керамический фильтр твердых частиц выхлопных газов для дизельных транспортных средств и способ его получения -  патент 2511997 (10.04.2014)
способ получения хемосорбента -  патент 2510868 (10.04.2014)
сорбирующие композиции и способы удаления ртути из потоков отходящих топочных газов -  патент 2509600 (20.03.2014)
углеродсодержащие материалы, полученные из латекса -  патент 2505480 (27.01.2014)
Наверх