волновая энергетическая машина

Классы МПК:F03B13/20 в которых оба элемента подвижны относительно дна моря или берега
Автор(ы):, ,
Патентообладатель(и):Саламатов Александр Михайлович,
Юнжаков Александр Петрович,
Бухряков Виктор Иванович
Приоритеты:
подача заявки:
1998-02-23
публикация патента:

Машина предназначена для использования в гидроэнергетике путем преобразования энергии волн в электроэнергию для снабжения нефтегазодобывающих платформ, плантаций марикультур, прибрежных и островных поселков и других потребителей. Устройство содержит поплавок в виде горизонтальной полой трубы, частично заполненной водой. Максимальный размер поперечного сечения трубы равен или меньше половины минимальной длины волны, на которую спроектирована машина, в центральной части трубы сверху или сбоку, или внутри нее установлен преобразователь поступательного движения, получаемого с помощью второй вертикальной трубы, заполненной водой и снабженной в верхней части зубчатыми рейками, во вращательное. Вращательное движение преобразуется с помощью муфт свободного хода. Частота вращения увеличивается с помощью мультипликатора и передается на электрогенератор, а от него - потребителю. Предлагаемое устройство обеспечивает работу как в диапазоне малых (3 - 4 балла) волн, так и при значительном волнении (5 - 6 баллов), что позволяет увеличить время ее работы в течение года и тем самым снизить стоимость вырабатываемой электроэнергии до стоимости электроэнергии, вырабатываемой ветроустановками. 1 з.п.ф-лы, 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

1. Волновая энергетическая машина (ВЭМ), содержащая первичный преобразователь энергии волн с кинематически связанными через первичный вал по меньшей мере двумя телами, по меньшей мере одно из которых, выполненное в виде поплавка, совершает колебания под действием волн, вторичный преобразователь, кинематически связанный с первичным валом устройства поглощения энергии, отличающаяся тем, что поплавок выполнен в виде горизонтальной полой трубы, частично заполненной водой, которая имеет наибольший размер поперечного сечения, равный или меньший половины длины волны минимальной балльности использования ВЭМ, в центральной части поплавка в герметичном отсеке внутри трубы, или сверху, или сбоку нее установлен вторичный преобразователь, причем так, что в центральной части вторичного преобразователя с возможностью перемещения относительно него вертикально установлена рама или труба, по длине которой с диаметрально противоположных сторон жестко закреплены две зубчатые рейки, длина которых больше высоты поплавка с вторичным преобразователем, а к нижней части рамы или трубы с рейками прикреплена труба большего диаметра, погруженная в воду и также частично или полностью заполненная водой, кроме того, центральная часть поплавка связана якорной связью с швартовой бочкой, установленной на воде на расстоянии нескольких диаметров поплавка с возможностью установления поплавка преимущественно вдоль фронта набегающих волн, при этом швартовая бочка связана якорной связью с грузом, устанавливаемым на дно водоема.

2. Волновая энергетическая машина по п.1, отличающаяся тем, что вторичный преобразователь устройства поглощения энергии выполнен в виде мультипликатора, установленного в поплавке и кинематически связанного с телами первичного преобразователя через муфты свободного хода и первичный вал, а выходной вал мультипликатора кинематически связан с валом электрогенератора, на котором установлен маховик.

Описание изобретения к патенту

Изобретение относится к энергетическому машиностроению и может быть использовано в устройствах для преобразования энергии волн в электрическую энергию.

Известна волновая энергетическая машина поплавкового типа (ПВЭМ), по технической сущности наиболее близкая (прототип) к заявляемому изобретению (пат. США N 4773221, кл. F 03 B 13/12).

Так же как и заявляемая, ПВЭМ по прототипу содержит:

- два тела, кинематически связанных между собой через первичный исполнительный механизм (например, первичный вал или поршень гидроцилиндра) устройства поглощения энергии;

- поплавок, воспринимающий колебания волн;

- жесткий шток, установленный в верхней части второго тела, для взаимодействия с поплавком.

К недостаткам прототипа можно отнести следующее:

- поплавок выполнен в виде торовидного тела, что на волнах с малой высотой (0. 25 м) и, следовательно, малой длиной волны (5 м) жестко ограничивает возможность повышения мощности единичного модуля ПВЭМ путем увеличения диаметра поплавка более 2.5 м (для указанной волны), т. к. в этом случае при малых фазовых скоростях волн (фазовая скорость определяется соотношением

Cф= (gволновая энергетическая машина, патент № 2141057волновая энергетическая машина, патент № 2141057/(2волновая энергетическая машина, патент № 2141057волновая энергетическая машина, патент № 2141057)1/2,

где Cф - фазовая скорость гравитационной волны на глубокой воде;

g - ускорение свободного падения;

волновая энергетическая машина, патент № 2141057 - длина волны

для нашего примера Cф=(9.81волновая энергетическая машина, патент № 21410575/(2волновая энергетическая машина, патент № 2141057волновая энергетическая машина, патент № 2141057)1/2=2.79 м/с (см., например, Б.Б. Кадомцев, В.И. Рыдник. "Волны вокруг нас", М., "Знание", 1981, стр. 24) в диаметре поплавка укладывается уже не одна вершина, а вершина и часть впадины волны, что резко снижает амплитуду колебаний поплавка и, следовательно, эффективность (мощность) ПВЭМ;

- поплавок снабжен длинной открытой снизу трубой, внутри которой перемещается поршень, при этом направляющими для поршня служит внутренняя поверхность трубы, что предопределяет необходимость точной обработки поверхности как поршня, так и трубы, и резко повышает себестоимость ПВЭМ и ее основную характеристику: стоимость 1 кВт часа вырабатываемой ею электроэнергии, так как "стоимость производства электроэнергии на 78.99% определяется себестоимостью ПВЭМ" (В.И.Сичкарев, В.А.Акуличев, "Волновые энергетические станции в океане", М., "Наука", 1989, стр. 101).

Целью настоящего изобретения является устранение указанных недостатков прототипа.

Указанная цель решается тем, что:

- поплавок выполнен в виде горизонтальной полой трубы, частично заполненной водой, при этом труба выполнена с наибольшим размером поперечного сечения, равным или меньшим 1/2 средней длины волны (из числа волн, входящих в группу) для волн минимальной балльности, на которую спроектирована ПВЭМ, это позволяет обеспечить максимально возможную амплитуду колебаний поплавка и, следовательно, максимально возможную эффективность (мощность) ПВЭМ на малых волнах (3-4 балла), которые по продолжительности их существования в течение года в различных зонах мирового океана могут составлять 40 - 60% (см., например, "Регистр СССР", "Ветер и волны в океанах и морях, справочные данные", справочные данные, Л., "Транспорт", 1974 год);

- в центральной части поплавка в герметичном отсеке внутри трубы или сверху, или сбоку от нее установлен вторичный преобразователь;

- в центральной части вторичного преобразователя, с возможностью перемещения относительно него, вертикально установлена рама или труба, по длине которой с диаметрально противоположных сторон жестко закреплены две зубчатые рейки, длина которых больше высоты вторичного преобразователя;

- к нижней части рамы или трубы с рейками прикреплена труба большего диаметра, погруженная вертикально в воду и частично или полностью заполненная водой, причем эта труба большего диаметра снизу и сверху закрыта, так что объем воды в ней, создающий инерционную массу, всегда постоянен, при этом эта труба в отличие от прототипа не требует никакой обработки (кроме сварки днищ) и может иметь некоторую негерметичность, что при постоянном ее нахождении в воде очень слабо может повлиять на ее инерционность (количество воды внутри трубы);

- центральная часть поплавка снабжена узлом, к которому прикрепляется якорная связь, далее идущая к швартовой бочке и донному грузу, это позволяет при любом направлении распространения волн обеспечить то, что горизонтальная труба поплавка будет всегда самоустанавливаться практически параллельно фронту распространения волн и именно это, совместно с величиной поперечного размера горизонтальной трубы позволяет повысить энергосъем с малых (со средней высотой в группе от 0.25 м до 1 м) волн, что в свою очередь позволяет повысить время работы ПВЭМ в году до 80% (кроме штиля и шторма).

Последнее обстоятельство на прямую влияет на количество часов работы ПВЭМ в году и значит на стоимость вырабатываемой ею электроэнергии.

Кроме того, вторичный преобразователь устройства поглощения целесообразно выполнять в виде мультипликатора (преимущественно планетарного) и кинематически связать входной вал мультипликатора с первичным валом вторичного преобразователя посредством муфт свободного хода, а рейки, установленные на вертикальной трубе, связать с первичным валом реечными шестернями.

Такое конструктивное исполнение позволяет преобразовать низкоскоростное относительное возвратно-поступательное перемещение реек и поплавка в высокоскоростное вращение вала генератора при максимально возможном суммарном КПД всего вторичного преобразователя.

Изложенное выше позволяет за счет оригинальной конструкции поплавка первичного преобразователя обеспечить максимально возможный энергосъем с волны для ПВЭМ, а также обеспечить максимально возможный КПД вторичного преобразователя, складывающегося в основном из КПД электрогенератора (т.е. из наилучшего, что может достигнуть промышленность, скажем, по сравнению с линейными электрогенераторами, работающими при малых скоростях относительного движения частей магнитной системы) и планетарного мультипликатора, который в большом диапазоне передаточных отношений имеет КПД, близкий к единице (см., например, А.Ф.Крайнев. "Словарь-справочник по механизмам", М., "Машиностроение", 1987, стр. 290 сверху).

Сущность изобретения поясняется графическими изображениями.

На фиг. 1 показан общий вид ПВЭМ, на фиг. 2 - разрез вторичного преобразователя.

Цифрами на фиг. 1 и 2 обозначены:

1 - первичный преобразователь ПВЭМ (непосредственно взаимодействующий с волнами);

2 - вторичный преобразователь (преобразующий движение тел первичного преобразователя во вращение, увеличивающий скорость этого вращения и преобразующий вращение в электроэнергию);

3 - горизонтальная труба поплавка;

4 - рама;

5 - зубчатые рейки;

6 - вертикальная труба, заполненная водой;

7 - тросы якорной связи;

8 - швартовая бочка;

9 - донный груз;

10 - дно водоема;

11 - первичный вал вторичного преобразователя;

12 - левая стойка рамы с рейкой, перемещающаяся вертикально;

13 - правая стойка рамы с рейкой, перемещающаяся вертикально;

14 - левая реечная шестерня;

15 - правая реечная шестерня;

16 - планетарный мультипликатор;

17 - левый промежуточный вал;

18 - правый промежуточный вал;

19 - левая шестерня промежуточного вала со встроенной муфтой свободного хода (МСХ);

20 - правая шестерня промежуточного вала со встроенной муфтой свободного хода;

21 - промежуточная шестерня первичного вала;

22 - шкив выходного вала мультипликатора, предназначенный для передачи вращения на вал генератора, на котором установлен маховик (не показаны);

Работа ПВЭМ по изобретению осуществляется следующим образом.

Под воздействием волн труба 3 начинает совершать преимущественно вертикальные колебания, в том числе и потому, что длина трубы 6 выбрана значительной (больше длины минимальной волны, на которую спроектирована ПВЭМ). Взаимодействуя через вторичный преобразователь 2 и зубчатые рейки 5 с трубой 6, труба 3 приводит в колебательное движение и трубу 6. Так как труба 6 выполнена с плавучестью, близкой к нулевой, и обладает большой инерцией за счет помещенной в ней воды, то ее колебания не совпадают с колебаниями трубы 3. В результате рейкам 5 сообщается возвратно-поступательное движение относительно трубы 3, а также относительно закрепленных на трубе 3 промежуточных валов 17 и 18. Рейки 5 через реечные шестерни 14 и 15 приводят валы 17 и 18 в реверсное вращение. МСХ встроены в шестерни 19 и 20 навстречу друг другу. Поэтому при движении стойки 13 вверх звездочка МСХ шестерни 20, жестко связанная с валом 18, входит в зацепление со своей наружной обоймой, жестко связанной с самой шестерней, и заставляет вращаться шестерню 20 вместе с валом. С шестерни 20 вращение через шестерню 21 передается на первичный вал 11, который начинает вращаться против часовой стрелки. В это время звездочка и обойма МСХ, встроенной в шестерню 19, расцеплены и шестерня 19 вращается свободно на валу 17. При движении стойки 12 вниз (совместно со стойкой 13, так как это единая рама) рейка 5 через шестерню 14 приводит во вращение вал 17. Аналогично описанному выше шестерня 19 с помощью встроенной в нее МСХ соединяется с валом 17 и через шестерню 21 передает вращение на первичный вал 11, вращая его также против часовой стрелки. В это время шестерня 20 вращается на валу 18 свободно. Таким образом вал 11 получает одностороннее вращение, которое далее через упругую муфту передается на входной вал мультипликатора 16. В мультипликаторе 16 частота вращения повышается до частоты вращения, согласованной с номинальной частотой вращения вала генератора, и через шкив 22 передается на вал генератора.

Стабильность частоты вращения вала генератора поддерживается маховиком (не показан), который устанавливается на вал генератора.

Таким образом, заявляемая ПВЭМ позволяет:

- максимально повысить отбор энергии с волн малой высоты (0.25 - 1 м) для волновых установок данного типа, путем оригинального устройства первичного преобразователя, этим самым повысить эффективность ПВЭМ за счет увеличения времени ее работы в течение года и, следовательно, снизить стоимость вырабатываемой ПВЭМ электроэнергии;

- максимально упростить конструкцию ПВЭМ путем введения в нее узлов (труба 6, труба 3), требующих минимальных затрат на их изготовление (нет никакой точной обработки).

Заявляемая ПВЭМ представляет собой единичный модуль по нашим расчетным оценкам мощностью 3 - 7 кВт. Такие единичные модули могут объединяться в сети по несколько сотен модулей и обеспечивать электроэнергией морские нефтегазодобывающие платформы, плантации марикультур, прибрежные и островные поселки и других потребителей электроэнергии.

Класс F03B13/20 в которых оба элемента подвижны относительно дна моря или берега

устройство для отбора энергии морских волн -  патент 2525986 (20.08.2014)
волновая электростанция -  патент 2482326 (20.05.2013)
волновая электростанция (варианты) -  патент 2386051 (10.04.2010)
волновая электростанция -  патент 2365780 (27.08.2009)
волновая электростанция -  патент 2313690 (27.12.2007)
волновая энергетическая установка -  патент 2305794 (10.09.2007)
маятниковый двигатель -  патент 2176327 (27.11.2001)
волновая энергетическая установка -  патент 2080478 (27.05.1997)
установка для использования энергии волн -  патент 2041385 (09.08.1995)
волновая энергетическая установка -  патент 2028502 (09.02.1995)
Наверх