способ получения пористых стекломатериалов из мартеновских шлаков

Классы МПК:C03C11/00 Пеностекло
Автор(ы):
Патентообладатель(и):Павлов Вячеслав Фролович
Приоритеты:
подача заявки:
1998-07-20
публикация патента:

Использование: для изготовления теплоизоляционных стекломатериалов. Способ получения из мартеновских шлаков пористых стекломатериалов с насыпной плотностью 45 - 100 кг/м3 включает составление шихты, состоящей из окислов SiO2, CaO, Al2O3, MgO, Fe2O3, Na2O, K2O, TiO2, FeO, MnO, P2O5. Затем доводят содержание SiO2 в шихте до массового отношения SiO2/CaO, равного 1 - 2, плавят в восстановительной среде, а затем силикатную часть расплава охлаждают в режиме "термоудара". В полученном стекломатериале нет эмиссии сероводорода. Техническая задача изобретения: расширение возможности применения мартеновских шлаков в качестве строительных и фильтрующих материалов.

Формула изобретения

Способ получения пористых стекломатериалов с насыпной плотностью 45 - 100 кг/м3 из мартеновских шлаков путем плавления шихты, включающей SiO2, CaO, Al2O3, MgO, Fe2O3, Na2O, K2O, TiO2, SO3, MnO в восстановительной среде, причем перед плавлением содержание углерода доводят до 3 мас.%, и последующего охлаждения силикатной части расплава в режиме "термоудара", отличающийся тем, что шихта дополнительно содержит FeO, Р2О5, а содержание оксида кремния в шихте доводят до массового отношения SiO2/CaO, равного 1 - 2, при следующем содержании компонентов, мас.%:

SiO2 - 20 - 25

CaO - 25 - 40

Al2O3 - 2 - 8

MgO - 7 - 15

MnO - 5 - 10

FeO - 12 - 18

Fe2O3 - 3 - 5

Р2О5 - 0,3 - 0,7

Na2O - 0,3 - 0,5

K2O - 0,15 - 0,5

TiO2 - 0,2 - 0,5

SO3 - 0,05 - 0,09

Описание изобретения к патенту

Изобретение относится к области переработки твердых отходов, в частности мартеновских шлаков металлургического производства, в пористые теплоизоляционные стекломатериалы для строительной индустрии и при производстве фильтрующих материалов.

Известен способ получения стекломатериалов из золошлаковых отходов (/1/ Патент Российской Федерации N 2052400), заключающийся в том, что в шихте следующего состава, мас.%:

SiO2 - 13 - 75

Al2O3 - 5 - 26

CaO - 9 - 54

Fe2O3 - 1 - 24

MdO - 2 - 6

Na2O - 0,1 - 1

K2O - 0,2 - 1

SO3 - 0,1 - 0,6

TiO2 - 0,2

C - 1 - 2

увеличивают содержание углерода до 3 - 8 мас.%, плавят в восстановительной среде, а затем полученный расплав "термоударом" охлаждают до образования стекломатериала. Таким способом достигается более полное извлечение железа и других переходных металлов из золошлаковых отходов и восстановление оксида кальция в карбид кальция, который на стадии "термоудара" вследствие разложения в воде образует газовую среду, способствующую получению стекломатериала с высокой пористостью. Это позволяет использовать их в качестве теплоизоляционных материалов. Однако наличие восстановительной атмосферы при плавлении способствует восстановлению сульфатной серы, содержащейся в золошлаковых отходах, до сульфидной, что при осуществлении "термоудара" контактированием с водой приводит к образованию сероводорода (вследствие гидролиза сульфидов), который накапливается в порах стекломатериала. Кроме того, непрореагировавшие с водой сульфиды являются потенциальными источниками сероводорода, поскольку при воздействии атмосферных водяных паров или другого источника влаги они гидролизуются с выделением сероводорода. Таким образом, эмиссия сероводорода из пористых стекломатериалов снижает их эксплуатационные качества и возможности применения в качестве строительных материалов.

В известном способе получения пористых материалов (/2/ RU N 2114797 С. 1 в шихте следующего состава, мас.%:

SiO2 - 45,0 - 60,0

CaO - 20,3 - 40,0

Al2O3 - 1,5 - 15,0

MgO - 1,0 - 5,0

Fe2O3 - 5,0 - 9,0

MnO - 4,0 - 18,0

SO3 - 0,1 - 3,0

Na2O - 0,4 - 0,6

K2O - 0,3 - 0,8

TiO2 - 0,1 - 0,2

доводят содержание углерода до 3 - 8 мас.%, плавят в восстановительной среде, а охлаждение "термоударом" осуществляют в водном растворе солей цинка, который связывает образовавшийся сероводород в нерастворимый сульфид цинка. Содержание оксида марганца в шихте способствует частичному перераспределению серы в металл.

Данный способ выбран в качестве прототипа по максимальному совпадению существенных признаков.

В процессе восстановительной плавки происходит перераспределение серы между оксидной и металлической фазами. Известно (/3/ Комплексная переработка силикатных отходов. Алма-Ата: Наука, 1985, 172 с., /4/ Теория металлургических процессов. М.: Металлургия, 1989, 392 с.), что понижение основности оксидной фазы снижает содержание серы в ней за счет перераспределения ее в металл. В частности, в металлургических шлаках за счет образования карбида кальция, восстановления оксидов железа происходит не полное перераспределение серы в металл, что не гарантирует снижения эмиссии сероводорода из полученных по способу /2/ стекломатериалов.

В основу заявленного изобретения положена задача разработки способа получения пористых стекломатериалов из мартеновских шлаков с низкой эмиссией сероводорода с тем, чтобы расширить возможности их применения в качестве строительных и фильтрующих материалов.

Поставленная задача решается тем, что в способе получения пористых стекломатериалов из мартеновских шлаков, заключающемся в том, что в шихте следующего состава, мас.%:

SiO2 - 20 - 25

CaO - 25 - 40

Al2O3 - 2 - 8

MgO - 7 - 15

MnO - 5 - 10

FeO - 12 - 18

Fe2O3 - 3 - 5

P2O5 - 0,3 - 0,7

Na2O - 0,3 - 0,5

K2O - 0,15 - 0,5

TiO2 - 0,2 - 0,5

SO3 - 0,05 - 0,09

доводят содержание углерода до 3 мас.% и плавят в восстановительной среде, затем силикатную часть расплава охлаждают в режиме "термоудара". Согласно изобретению содержание оксида кремния в шихте доводят до массового отношения SiO2/CaO, равного 1 - 2.

Сущность заявляемого способа заключается в том, что восстановление закиси железа, образование карбида кальция и алюминия в процессе восстановительной плавки, наличие P2O5 в силикатной части расплава, а также разубоживание шихты кремнеземом приводит к существенному понижению основности силикатной части расплава и перераспределению серы в металл. При охлаждении силикатной части расплава в полученном пористом теплоизоляционном материале эмиссии сероводорода не наблюдается.

Нижепредлагаемый способ получения пористых стекломатериалов из мартеновских шлаков поясняется конкретными примерами его осуществления.

Пример 1.

500 г мартеновских шлаков состава, мас.%:

SiO2 - 24,1

CaO - 29,9

Al2O3 - 7,4

MgO - 12,5

MnO - 7,9

FeO - 13,5

Fe2O3 - 3,1

P2O5 - 0,5

TiO2 - 0,5

Na2O - 0,36

K2O - 0,15

SO3 - 0,09

плавят в восстановительной среде при температуре 1580 - 1610oC в течение 1 часа. Затем полученную силикатную часть расплава охлаждают отливом в воду. При этом происходит вспенивание расплава. Полученный материал с насыпной плотностью 580 кг/м3 помещают в сосуд и измеряют эмиссию сероводорода, которая равна 0,002 мг/м3.

Пример 2.

В 500 г мартеновских шлаков состава, мас.%:

SiO2 - 23,0

CaO - 29,0

Al2O3 - 7,0

MgO - 12,0

MnO - 7,9

FeO - 13,5

Fe2O3 - 3,0

P2O5 - 0,5

TiO2 - 0,2

NaO2 - 0,46

K2O - 0,35

SO3 - 0,09

вводят 3 мас. % углерода и доводят отношение SiO2/CaO до 1,1, плавят в восстановительной среде при температуре 1580 - 1610oC в течение 1 часа. Затем полученную силикатную часть расплава охлаждают отливом в воду. При этом происходит вспенивание расплава. Полученный материал с насыпной плотностью 75 кг/м3 помещают в сосуд и измеряют эмиссию сероводорода, которая не обнаруживается.

Пример 3.

В 500 г мартеновских шлаков состава, аналогичного примеру 2, доводят отношение SiO2/CaO до 1,2, вводят углерод, плавят и охлаждают аналогично примеру 2, полученный материал с насыпной плотностью 100 кг/м3 помещают в сосуд и измеряют эмиссию сероводорода, которая не обнаруживается.

Пример 4.

В 500 г мартеновских шлаков состава, аналогичного примеру 2, доводят отношение SiO2/CaO до 1,42, вводят углерод, плавят и охлаждают аналогично примеру 2. Полученный материал с насыпной плотностью 72 кг/м3 помещают в сосуд и измеряют эмиссию сероводорода, которая не обнаруживается.

Пример 5.

В 500 г мартеновских шлаков состава, аналогичного примеру 2, доводят отношение SiO2/CaO до 1,5, вводят углерод, плавят и охлаждают аналогично примеру 2. Полученный материал с насыпной плотностью 45 кг/м3 анализируют аналогично примеру 2. Эмиссия сероводорода не обнаружено.

Пример 6.

В 500 г мартеновских шлаков состава, аналогичного примеру 2, доводят отношение SiO2/CaO до 2, вводят углерод, плавят и охлаждают аналогично примеру 2. Полученный материал с насыпной плотностью 80 кг/м3 анализируют аналогично примеру 2. Эмиссии сероводорода не обнаружено.

Пример 7.

В 500 г мартеновских шлаков состава, аналогичного примеру 2, доводят отношение SiO2/CaO до 2,5, вводят углерод, плавят аналогично примеру 2. Полученный расплав имеет большую вязкость и исключает возможность охлаждения его в режиме "термоудара".

Класс C03C11/00 Пеностекло

гранулированное пеношлакостекло -  патент 2528798 (20.09.2014)
способ производства гранулированного пеностекла из стеклобоя -  патент 2526452 (20.08.2014)
способ и устройство для изготовления пористого остеклованного блока -  патент 2525076 (10.08.2014)
способ изготовления пеностекла -  патент 2522606 (20.07.2014)
способ получения вспененного материала и шихта для его изготовления -  патент 2520280 (20.06.2014)
гранулированное пеношлакостекло -  патент 2515520 (10.05.2014)
способ изготовления цветного пеностекла -  патент 2513823 (20.04.2014)
шихта для изготовления стеклогранулята для производства гранулированного пеностекла -  патент 2508255 (27.02.2014)
способ изготовления пеностекла -  патент 2502686 (27.12.2013)
пеношлакостекло -  патент 2500632 (10.12.2013)
Наверх