никелевый катализатор на носителе для получения богатого водородом и/или моноокисью углерода газа и способ получения указанного газа

Классы МПК:B01J23/72 медь
C01B3/38 с использованием катализаторов
B01J8/04 в присутствии жидкости или газа, пропускаемых последовательно через два или более слоя
Автор(ы):, ,
Патентообладатель(и):Хальдор Топсеэ А/С (DK)
Приоритеты:
подача заявки:
1994-08-26
публикация патента:

Описывается никелевый катализатор на носителе для получения богатого водородом и/или моноокисью углерода газа путем парового риформинга азотсодержащего углеводородного сырья, который дополнительно содержит медь при следующем соотношении компонентов, мас.%: никель - 5-50; медь - 0,03-0,5; носитель - остальное, и способ получения богатого водородом и/или моноокисью углерода газа путем пропускания смеси азотсодержащих углеводородов и пара и/или двуокиси углерода через катализаторный слой, включающий указанный никелево-медный катализатор на носителе, при повышенных температурах и под давлением с последующим выделением целевого продукта. Технический результат состоит в существенном снижении образования аммиака в процессе получения богатого водородом и/или моноокисью углерода газа путем парового рифоминга азотсодержащего углеводородного сырья и тем самым уменьшении общих производственных затрат. 2 с. и 1 з.п.ф-лы.

Формула изобретения

1. Никелевый катализатор на носителе для получения богатого водородом и/или моноокисью углерода газа путем парового риформинга азотсодержащего углеводородного сырья, отличающийся тем, что он дополнительно содержит медь при следующем соотношении компонентов, мас.%:

Никель - 5 - 50

Медь - 0,03 - 0,5

Носитель - Остальное

2. Способ получения богатого водородом и/или моноокисью углерода газа путем пропускания смеси азотсодержащих углеводородов и пара и/или двуокиси углерода через катализаторный слой, включающий никелевый катализатор на носителе, при повышенных температурах и под давлением и последующего выделения целевого продукта, отличающийся тем, что в качестве никелевого катализатора на носителе используют катализатор, содержащий 5 - 50 мас.% никеля и 0,03 - 0,5 мас.% меди, остальное - носитель.

3. Способ по п.2, отличающийся тем, что указанную смесь пропускают через катализаторный слой, состоящий из верхнего слоя стандартного никелевого катализатора на носителе и нижнего слоя указанного никелево-медного катализатора на носителе в соотношении 25 : 75 - 75 : 25, при этом катализаторный слой выполнен неподвижным.

Описание изобретения к патенту

Изобретение относится к области производства газов, богатых водородом и/или моноокисью углерода, путем парового риформинга углеводородов, более конкретно к никелевому катализатору на носителе для получения газа, богатого водородом и/или моноокисью углерода, и способу для получения указанного газа.

Известно применение никелевого катализатора на носителе, который может содержать окислы щелочного или щелочно-земельного металлов в качестве промотора для парового риформинга углеводородного сырья, которое может содержать азот (см. например, патент США N 4830834, МКИ: В 01 J 08/04, 1989). В этом патенте также описывается способ получения богатого водородом и/или моноокисью углерода газа путем пропускания смеси пара (и/или двуокиси углерода) и углеводородов, нагретой до температуры примерно 350 - 600oC, через первый и второй слои никелевого катализатора на носителе под давлением с последующим выделением целевого продукта путем конденсации и жидкостно-газофазного разделения. Получаемый при этом жидкий конденсат, который в основном состоит из воды, рециркулируют на стадию парового риформинга через стадию производства пара.

В большинстве случаев перед подачей на стадию производства пара конденсат должен очищаться от водорастворимых соединений и солей, для чего конденсат пропускают через стадию деминерализации на ионитах.

Очистка конденсата, получаемого в процессе парового риформинга, в частности конденсата, получаемого в процессе парового риформинга углеводородного сырья с высоким содержанием азота, такого, как, например, природный газ определенных месторождений, связана со следующей проблемой. Содержащийся в исходном сырье азот вступает в реакцию с водородом с образованием аммиака по уравнению N2 + 3H2 ---> 2 NH3 при пропускании через слой стандартного никелевого катализатора парового риформинга. Образующийся аммиак почти полностью из получаемого сырого продукта переходит в конденсат, получаемый в процессе переработки сырого газа. При переработке сырого газообразного продукта парового риформинга природного газа возможны содержания аммиака в получаемом конденсате до 300 млн.-1. Такие высокие концентрации аммиака требуют частой регенерации или замены дорогостоящего ионита, применяемого для деминерализации конденсата, что увеличивает общие производственные затраты.

Таким образом задачей изобретения является существенное снижение образования аммиака в процессе получения богатого водородом и/или моноокисью углерода газа путем парового риформинга азотсодержащего углеводородного сырья и, тем самым, уменьшение общих производственных затрат.

Данная задача достигается предлагаемым никелевым катализатором на носителе для получения богатого водородом и/или моноокисью углерода газа путем парового риформинга азотсодержащего углеводородного сырья за счет того, что катализатор дополнительно содержит медь при следующем соотношении компонентов, мас.%:

Никель - 5 - 50

Медь - 0,03 - 0,5

Носитель - Остальное.

Данная задача также решается в способе получения богатого водородом и/моно окисью углерода газа путем пропускания смеси азотсодержащих углеводородов и пара и/или двуокиси углерода через катализаторный слой, включающий никелевый катализатор на носителе, при повышенных температурах и под давлением и последующего выделения целевого продукта за счет того, что в качестве никелевого катализатора на носителе используют катализатор, содержащий 5 - 50 мас.% никеля и 0,03 - 0,5 мас.% медь, остальное - носитель.

Исходное сырье предпочтительно пропускают через катализаторный слой, состоящий из верхнего слоя стандартного никелевого катализатора на носителе и нижнего слоя предлагаемого никелевого катализатора на носителе в соотношении 25 : 75 - 75 : 25, при этом катализаторный слой выполнен неподвижным.

Пригодным для осуществления парового риформинга углеводородным сырьем являются, например, природный газ, отходящие газы нефтеперерабатывающих заводов, пропан, тяжелый бензин и сжиженные нефтяные газы.

Предлагаемый никелевый катализатор на носителе можно получать любым известным методом, например путем пропитки огнеупорного носителя водным раствором, содержащим никель и медь, и последующей кальцинации пропитанного носителя в воздухе. Кроме того, катализатор можно также получать путем соосаждения растворимых солей носителя, никеля и меди. Подходящими солями являются, например, хлориды, нитраты, карбонаты, ацетаты и оксалаты, которые в результате нагревания в воздухе переводятся в окислы металлов.

Подходящими материалами для выполнения носителя являются, например, окислы алюминия, магния, бериллия, лантана, кальция, двуокиси титана, кремния, циркония, соединения указанных металлов и их смеси. Предпочтительными материалами для выполнения носителя являются окись алюминия или магнезиально-глиноземнистая шпинель.

Предлагаемый способ в особенности осуществляют в трубчатых реакторах риформинга.

Изобретение и его положительный эффект иллюстрируются следующими примерами.

Пример 1 (согласно изобретению). Приготовляют никелево-медный катализатор, содержащий 15 мас.% никеля и 0,33 мас.% меди, путем пропитки шпинельного носителя (MgAl2O4) водными растворами смешанных нитратов никеля и меди. Пропитанный носитель подвергают кальцинации в воздухе, в результате чего нитраты разлагаются до окислов. Получаемый катализатор подают в реактор и подвергают активации путем нагрева до 800oC в среде смеси одинаковых количеств пара и водорода при атмосферном давлении. В процесс активации окислы никеля и меди на носителе восстанавливают до металлического состояния. Температуру 800oC сохраняют в течение дополнительных 150 ч с тем, чтобы обеспечить спекание катализатора, как это имеет место в процессе промышленной эксплуатации. По окончании спекания катализатор удаляют из реактора и дробят до величины частиц 3,4 - 5,0 мм. Получаемый таким образом катализатор и известный никелевый катализатор (содержащий 15 мас.% никеля) на спинельном носителе (MgAl2O4), который получают и активируют тем же образом, что и предлагаемый катализатор, загружают в соотношении 75 : 25 в качестве неподвижного двухслойного катализатора в трубчатый реактор. При этом верхним слоем является известный никелевый катализатор. Общее количество катализатора составляет 95,0 г. В реактор подают 440,2 нл/ч газа состава, об.%: 24,76 метана, 73,83 воды, 0,57 водорода и 0,84 азота. Исходный газ нагревают до 500oC. Паровой риформинг осуществляют при температуре 18,6 бар. Получаемый сырой газообразный продукт с температурой 850oC отводят из реактора и подают на переработку путем конденсации и жидкостно-газофазного разделения. При этом получают газообразный продукт и водный конденсат, содержащий а) 140 млн-1 аммиака после 20-часовой эксплуатации катализатора, б) 85 млн-1 аммиака после 200-часовой эксплуатации в реакторе и в) 65 млн-1 аммиака после 450-часовой эксплуатации в реакторе. Водную фазу очищают от водорастворимых компонентов и затем рециркулируют на стадию парового риформинга через стадию производства пара. После 450-часовой эксплуатации газообразный продукт имеет следующий состав (об.%, в пересчете на сухой газ): 2,90 CH4 14,84 СО; 7,50 СО2, 0,83 N2 и 73,93 H2.

Пример 2 (согласно изобретению). Повторяют пример 1 с той разницей, что процесс осуществляют исключительно на никелево-медном катализаторе на шпинельном носителе, включающем 25 мас.% никеля и 0,5 мас.% меди.

В результате переработки путем конденсации и жидкостно-газофазного разделения получают газообразный продукт и водный конденсат, содержащий а) 165 млн-1 аммиака после 20-часовой эксплуатации катализатора, б) 105 млн-1 аммиака после 200-часовой эксплуатации в реакторе и в) 85 млн-1 аммиака после 450-часовой эксплуатации в реакторе. Водную фазу очищают от водорастворимых компонентов и затем рециркулируют на стадию парового риформинга через стадию производства пара. После 450-часовой эксплуатации газообразный продукт имеет следующий состав (об.%, в пересчете на сухой газ): 2,88 CH4; 14,75 СО; 7,57 СО2; 0,83 N2 и 73,97 H2.

Пример 3 (согласно прототипу). Повторяют пример 1 с той лишь разницей, что слой катализатора состоит исключительно из известного катализатора на носителе. В результате жидкостно-газофазного разделения получаемого продукта получают водную фазу, содержащую а) 325 млн-1 аммиака после 20-часовой эксплуатации реактора и б) 230 млн-1аммиака после 200-часовой и 450-часовой эксплуатации реактора. После 450-часовой эксплуатации газообразный продукт имеет следующий состав (об.%, в пересчете на сухой газ): 2,86 CH4; 14,48 СО; 7,56 СО2; 0,84 N2 и 74.26 H2л

Класс B01J23/72 медь

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения фенилэтинил производных ароматических соединений -  патент 2524961 (10.08.2014)
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
катализатор конверсии водяного газа низкой температуры -  патент 2491119 (27.08.2013)
системы и способы удаления примесей из сырьевой текучей среды -  патент 2490310 (20.08.2013)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2489207 (10.08.2013)
способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном -  патент 2484898 (20.06.2013)
способы удаления примесей из потоков сырья для полимеризации -  патент 2480442 (27.04.2013)

Класс C01B3/38 с использованием катализаторов

способ конверсии метана -  патент 2525124 (10.08.2014)
способ повышения качества природного газа с высоким содержанием сероводорода -  патент 2522443 (10.07.2014)
способ получения водорода и водород-метановой смеси -  патент 2520482 (27.06.2014)
способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах -  патент 2520475 (27.06.2014)
способ конверсии метана -  патент 2517505 (27.05.2014)
системы и способы производства сверхчистого водорода при высоком давлении -  патент 2516527 (20.05.2014)
способ получения водорода -  патент 2515477 (10.05.2014)
способ конверсии дизельного топлива и конвертор для его осуществления -  патент 2515326 (10.05.2014)
способ получения синтез-газа для производства аммиака -  патент 2510883 (10.04.2014)
пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием -  патент 2506119 (10.02.2014)

Класс B01J8/04 в присутствии жидкости или газа, пропускаемых последовательно через два или более слоя

устройство для синтеза безводного галоида водорода и безводного диоксида углерода -  патент 2529232 (27.09.2014)
мембранный реактор -  патент 2527785 (10.09.2014)
устройство для получения серы -  патент 2501600 (20.12.2013)
устройство и способ для синтеза аммиака -  патент 2497754 (10.11.2013)
способ получения хлора окислением в газовой фазе -  патент 2475447 (20.02.2013)
система для получения аммиака (варианты), способ получения аммиака и способ модернизации системы для получения аммиака -  патент 2469953 (20.12.2012)
совместное получение ароматических соединений в установке производства пропилена из метанола -  патент 2462446 (27.09.2012)
способ и устройство для алкилирования ароматического соединения алифатическим моноолефиновым соединением с от 8 до 18 атомами углерода -  патент 2458032 (10.08.2012)
многореакторная химическая производственная система -  патент 2455059 (10.07.2012)
способ и реактор фторирования -  патент 2446139 (27.03.2012)
Наверх