способ анионообменного разделения хрома и ванадия

Классы МПК:C22B3/24 адсорбцией на твердых веществах, например экстракцией твердыми смолами
B01D15/04 с ионообменными материалами в качестве адсорбентов
C01G31/00 Соединения ванадия
C01G37/00 Соединения хрома
Автор(ы):
Патентообладатель(и):Государственный научный центр - Научно-исследовательский институт атомных реакторов
Приоритеты:
подача заявки:
1998-01-26
публикация патента:

Изобретение относится к разделению хрома и ванадия. Оно позволяет увеличить степень очистки хрома при анионообменном разделении хрома и ванадия. Для этого разделение проводят из раствора ацетатов хрома и ванадия в уксусной кислоте с концентрацией последней 0,5-13,0 моль/л. 3 табл.

Формула изобретения

Способ анионообменного разделения хрома и ванадия, включающий получение раствора их солей в смеси кислоты и пероксида водорода, контактирование полученного раствора с сильноосновным анионитом с последующим отделением раствора от сорбента, отличающийся тем, что разделение проводят из раствора ацетатов хрома и ванадия в уксусной кислоте с концентрацией последней 0,5 - 13 моль/л.

Описание изобретения к патенту

Изобретение относится к области химической технологии и может быть использовано в радиохимии и аналитической химии.

Известны способы анионообменного разделения хрома и ванадия в степенях окисления Cr(lll) и V(IV,V) в присутствии комплексообразующих реагентов: роданида калия [Schmitt B.R., Segebade С. Z. Anal. Chem., 270,193(1974)] и этилендиаминтетрауксусной кислоты (ЭДТА) [Nelson F., Day R.A., Kraus K.A. J. Inorg. Nucl. Chem., 15,140(1960)].

Указанные способы включают следующие операции: перевод разделяемых элементов в раствор, введение в раствор комплексообразователя и, при необходимости, корректировка кислотности раствора, статическое или динамическое контактирование раствора с анионитом, фракционирование раствора в ходе хроматографического разделения или отделение раствора от анионита и десорбция поглощенного компонента при статическом разделении.

Недостатком указанных способов является низкая степень взаимной очистки хрома и ванадия. Данный недостаток обусловлен низким соотношением коэффициентов распределения разделяемых элементов.

Наиболее близким аналогом, совпадающим с заявляемым изобретением по наибольшему количеству существенных признаков, является способ [Р.Курода, Т. Кирияма, Japan Analyst, 19(1970), 1287; цит. по РЖХим, 1971, 7Г168], включающий следующие операции: получение раствора хлоридов разделяемых элементов в 0,1 моль/л HCl, введение в полученный раствор пероксида водорода до его конечной концентрации 5% (объемн.), контактирование полученного раствора с анионитом Dowex 1х8, получение хрома и ванадия в виде их индивидуальных растворов (после контактирования хром находится в растворе, ванадий переводят в раствор последующей обработкой сорбента 4 - 6 моль/л HCl)

Недостатком прототипа является снижение степени очистки хрома при увеличении концентрации последнего в рабочем растворе. Указанный недостаток обусловлен снижением коэффициента распределения ванадия (DV) в данной сорбционной системе. Так, если в интервале концентраций хрома 0,1 - 1,0 г/л коэффициент распределения ванадия составляет 45способ анионообменного разделения хрома и ванадия, патент № 21268465, то при содержании хрома 5 г/л DV уменьшается до 20способ анионообменного разделения хрома и ванадия, патент № 21268463. Ввиду того, что коэффициент распределения хрома (DCr) в интервале его концентраций 0,1 - 10 г/л имеет значение, не превышающее 0,5, степень очистки ванадия остается при этом постоянной.

Для увеличения степени очистки хрома при анионообменном разделении данных элементов хром и ванадий переводят в раствор их уксуснокислых солей (ацетатов) в уксусной кислоте с концентрацией последней 0,5 - 13 моль/л, вводят пероксид водорода и контактируют полученный раствор с сильноосновным анионитом (в статическом или колоночном варианте). После контактирования хром находится в исходном растворе, для перевода в раствор ванадия сорбент обрабатывают 4 - 6 моль/л HCl.

Новым существенным признаком заявляемого способа по сравнению с прототипом является проведение процесса разделения хрома и ванадия из раствора их ацетатов в уксусной кислоте.

Наличие операции перевода разделяемых элементов в раствор их ацетатов в уксусной кислоте позволяет увеличить коэффициент распределения ванадия в интервале концентраций хрома 0,1 - 1 г/л до величины (1,0способ анионообменного разделения хрома и ванадия, патент № 21268460,2)способ анионообменного разделения хрома и ванадия, патент № 2126846104, что в 180 - 200 раз превышает соответствующий показатель прототипа. При концентрации хрома 5 г/л коэффициент распределения ванадия по заявляемому способу превышает DV по прототипу в 100 - 140 раз и составляет (3,2способ анионообменного разделения хрома и ванадия, патент № 21268460,5)способ анионообменного разделения хрома и ванадия, патент № 2126846103. Таким образом, при прочих равных условиях предлагаемое решение обеспечивает более глубокую, по сравнению с прототипом, очистку хрома от ванадия. Величина коэффициента распределения хрома (DCr), определяющая степень очистки от него ванадия, не превышает 0,5 как для прототипа, так и для предлагаемого решения во всем заявляемом интервале концентраций уксусной кислоты. Следовательно, использование заявляемого способа не приводит к ухудшению данного показателя прототипа.

Минимальная концентрация уксусной кислоты определяется необходимостью устранения эффектов гидролиза хрома и изменения химических форм пероксидного соединения ванадия. Верхняя граница концентрации CH3COOH в рабочем растворе определяется естественным снижением максимально достижимой ее концентрации (16,5 моль/л) за счет введения раствора H2O2. Верхняя граница концентрации хрома определяется растворимостью его ацетата.

Наличие операции перевода разделяемых элементов в их уксуснокислые соли является необходимым условием получения положительного эффекта при последующем анионо-обменном разделении. Так, положительный эффект не достигается (величина Dv не превышает показатель прототипа) при проведении разделения из растворов хлоридов хрома и ванадия в уксусной кислоте во всем заявляемом интервале ее концентраций.

Таким образом, использование растворов ацетатов хрома и ванадия в уксусной кислоте для их анионообменного разделения приводит к новым, не описанным в литературе их свойствам. Это позволяет сделать вывод, что заявляемое решение обладает существенными отличиями.

Положительный эффект при использовании заявляемого решения заключается в увеличении степени очистки хрома от ванадия и, как следствие, в увеличении выхода ванадия.

Разделение хрома и ванадия в уксуснокислых растворах.

Ацетатные растворы хрома и ванадия готовили осаждением их смешанных гидроксидов аммиаком, отделением и промывкой полученного осадка водой с последующим растворением гидроксидов в 16,5 моль/л уксусной кислоте. Ванадий в исходном растворе находился в одной из его устойчивых степеней окисления: V(IV) или V(V). Аликвоты полученного раствора использовали для приготовления менее концентрированных по CH3COOH смешанных растворов хрома и ванадия. В растворы ацетатов хрома и ванадия добавляли пероксид водорода (25%-ный раствор) в количестве, соответствующем его содержанию в рабочем растворе 5%(объемн.). Полученный раствор контактировали в статических условиях с анионитом Dowex 1х8 при соотношении объемов сорбента и раствора 1/15. Исходная концентрация ванадия во всех случаях составляла 0,2 г/л.

Результаты представлены в табл. 1. Как видно из табл. 1, в интервале концентраций хрома 1 - 10 г/л коэффициент распределения ванадия изменяется от 1,0способ анионообменного разделения хрома и ванадия, патент № 2126846104 до 1,3способ анионообменного разделения хрома и ванадия, патент № 2126846103, что при указанных условиях разделения позволяет снизить содержание в хроме ванадия до уровня, соответственно, (0,2 - 1,1)% к исходному. Выход ванадия составляет от 98,9% до 99,8%.

Сравнение с прототипом.

Разделение хрома и ванадия (статический вариант). Раствор ацетата хрома и ванадия в 4 моль/л CH3COOH получали, как указано в примере 1. Разделение по прототипу проводили из растворов 0,1 моль/л соляной кислоты. Во всех случаях растворы содержали 5% (объемн. ) пероксида водорода. Соотношение объемов анионита Lowex 1х8 и раствора составляло 1/15. Исходная концентрация ванадия 0,2 г/л. Результаты представлены в табл. 2

Как видно из табл. 2, степень очистки хрома от ванадия в уксуснокислых растворах превышает соответствующий показатель прототипа в способ анионообменного разделения хрома и ванадия, патент № 212684650 ([Cr]=10 г/л) и более (способ анионообменного разделения хрома и ванадия, патент № 2126846150 для [Cr] =1 г/л) раз. Выход ванадия по заявляемому способу составил не менее 98,5%. Для сравнения, по прототипу выход ванадия снижается по мере роста концентрации хрома от 74% ([Cr]-1 г/л) до 43% ([Cr]= 10 г/л).

Динамическое (колоночное) разделение. Разделение проводили на колонках, содержащих 1 см3 анионита Dowex 1х8. Геометрические характеристики колонок, а также скорость фильтрации были одинаковыми. Исходный раствор содержал: хрома 4 г/л, ванадия 0,4 г/л, пероксида водорода 5%(объемн.). Рабочей средой являлись: 0,1 моль/л HCl (прототип) и 4 моль/л CH3COOH (заявляемое решение). Результаты хроматографического разделения хрома и ванадия по прототипу и по заявляемому решению представлены в табл. 3.

Как видно из табл. 3, степень хроматографической очистки равных масс хрома по заявляемому способу значительно выше, чем по прототипу. Так, при разделении 0,14 г хрома и 0,014 г ванадия остаточное содержание ванадия составляет: 11,7% (прототип) и 0,12% (заявляемый способ). При этом выход ванадия составляет 88,3% (прототип) и 99,88% (заявляемый способ).

Класс C22B3/24 адсорбцией на твердых веществах, например экстракцией твердыми смолами

способ разделения платины (ii, iv), родия (iii) и никеля (ii) в хлоридных растворах -  патент 2527830 (10.09.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ извлечения тонкодисперсного золота из глинистых отложений -  патент 2525193 (10.08.2014)
способ извлечения ионов серебра из низкоконцентрированных растворов азотнокислого серебра -  патент 2524038 (27.07.2014)
способ извлечения рения из урансодержащих растворов -  патент 2523892 (27.07.2014)
способ переработки фосфогипса для производства концентрата редкоземельных металлов и гипса -  патент 2520877 (27.06.2014)
способ извлечения урана из маточных растворов -  патент 2516025 (20.05.2014)
способ получения пентаоксида ванадия из ванадийсодержащего шлака. -  патент 2515154 (10.05.2014)
сорбционное извлечение ионов железа из кислых хлоридных растворов -  патент 2514244 (27.04.2014)
сорбционное извлечение ионов кобальта из кислых хлоридных растворов -  патент 2514242 (27.04.2014)

Класс B01D15/04 с ионообменными материалами в качестве адсорбентов

ионообменный рукавный фильтр -  патент 2498840 (20.11.2013)
способ очистки солей алюминия от железа -  патент 2489353 (10.08.2013)
способ обработки водного потока из реакции фишера-тропша посредством ионообменной смолы -  патент 2478578 (10.04.2013)
контактор с разделенным потоком -  патент 2469765 (20.12.2012)
ферромагнитный ионообменник -  патент 2461520 (20.09.2012)
ионообменный аппарат -  патент 2445998 (27.03.2012)
способ проведения массообменных сорбционных процессов, аппарат для его осуществления, промышленная установка для разделения компонентов водных растворов неорганических веществ и аппарат для отделения органических жидких веществ от водных растворов -  патент 2434679 (27.11.2011)
колонный противоточный ионитный фильтр -  патент 2318574 (10.03.2008)
установка для фазоселективной адсорбции или ионообмена компонента из текучей дисперсной или жидкой среды и способ фазоселективной адсорбции или ионообмена компонента из текучей дисперсной или жидкой среды (варианты) -  патент 2298425 (10.05.2007)
способ сорбционного извлечения гидроксисульфокислот из водных растворов -  патент 2258697 (20.08.2005)

Класс C01G31/00 Соединения ванадия

способ получения сульфата ванадила -  патент 2525903 (20.08.2014)
способ получения пентаоксида ванадия -  патент 2497964 (10.11.2013)
способ получения покрытых аморфным углеродом наночастиц и способ получения карбида переходного металла в форме нанокристаллитов -  патент 2485052 (20.06.2013)
способ получения сложного ванадата цинка и кадмия -  патент 2471713 (10.01.2013)
сложный ванадат марганца и никеля и способ его получения -  патент 2471712 (10.01.2013)
способ определения концентрации ванадия в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой (варианты) -  патент 2466096 (10.11.2012)
люминофор на основе двойного пированадата цезия -  патент 2458963 (20.08.2012)
способ получения оксида ванадия с использованием экстракции -  патент 2456241 (20.07.2012)
способ получения оксида ванадия -  патент 2454369 (27.06.2012)
способ получения оксида ванадия с применением ионообмена для осуществления циркуляции сточной воды -  патент 2454368 (27.06.2012)

Класс C01G37/00 Соединения хрома

способ получения гидроксохроматов меди(+2) -  патент 2504517 (20.01.2014)
способ утилизации отработанных растворов, содержащих соединения шестивалентного хрома -  патент 2491232 (27.08.2013)
способ получения монохромата натрия -  патент 2466097 (10.11.2012)
магнитный полупроводниковый материал -  патент 2400850 (27.09.2010)
способ нейтрализации отработанных растворов, содержащих хром (+6) -  патент 2395463 (27.07.2010)
композиция для хроматирования металлических поверхностей и способы получения компонентов для ее изготовления -  патент 2393994 (10.07.2010)
способ выделения хрома ( vi ) из водных растворов -  патент 2383380 (10.03.2010)
способ получения бихромата трехвалентного хрома и композиция для хроматирования металлических поверхностей -  патент 2375310 (10.12.2009)
способ получения хромового ангидрида -  патент 2370446 (20.10.2009)
способ получения хромата щелочного металла -  патент 2349552 (20.03.2009)
Наверх