способ исследования нагнетательных скважин (варианты)

Классы МПК:E21B47/00 Исследование буровых скважин
E21B47/10 определение места оттока, притока или колебаний жидкости 
E21B47/06 измерение температуры или давления
Автор(ы):, , , , ,
Патентообладатель(и):Башкирский государственный университет,
Общество с ограниченной ответственностью Научно- производственная фирма "ГеоТЭК"
Приоритеты:
подача заявки:
1997-04-21
публикация патента:

Способ может быть использован для определения места нарушения герметичности насосно-компрессорных труб (НКТ) и эксплуатационной колонны. Температуру измеряют вдоль ствола скважины через 0,5 - 5,0 ч после перевода ее с режима квазистационарного распределения температуры в НКТ в процессе закачки на отбор жидкости через НКТ. В каждом выявленном интервале аномалии температуры проводят два измерения температуры, первое не более 2 мин, а второе 5-12 мин после перевода с режима закачки на отбор жидкости через НКТ, при котором регистрируют в НКТ 0,1 способ исследования нагнетательных скважин (варианты), патент № 2121571 Tо, где способ исследования нагнетательных скважин (варианты), патент № 2121571Tо= Tм - ТНКТ, Tм и TНКТ - температура в межтрубье и в НКТ перед началом отбора жидкости из скважины. О нарушении герметичности НКТ судят по форме аномалии температуры при первом измерении, о нарушении герметичности эксплуатационной колонны судят по отсутствию аномалии при первом и по наличию аномалии при втором измерениях. По второму варианту способа в каждом выявленном интервале аномалии температуры проводят три измерения - второе и третье в течение 2 мин и 5-12 мин соответственно после перевода с режима закачки на отбор. О нарушении герметичности НКТ судят по отсутствию аномалии при первом измерении и по наличию - при втором. О нарушении герметичности эксплуатационной колонны судят по отсутствию аномалии температуры при первом и втором и по наличию - при третьем измерениях. Способ позволяет повысить точность определения мест нарушения герметичности НКТ и эксплуатационной колонны. 2 с. и 1 з.п.ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Способ исследования нагнетательных скважин, оборудованных насосно-компрессорными трубами (НКТ), включающий регистрацию изменения температуры вдоль ствола скважины через 0,5 - 5,0 ч после перевода ее с режима квазистационарного распределения температуры в НКТ в процессе закачки на отбор жидкости через НКТ, проведение в каждом выявленном интервале температурных аномалий регистрации изменения температуры при отборе пробы и сопоставление полученных термограмм, отличающийся тем, что в каждом выявленном интервале аномалии температуры проводят два измерения температуры, причем первое - в течение времени, не превышающего 2 мин, а второе - в интервале 5 - 12 мин после перевода скважины с режима квазистационарного распределения температуры в НКТ выше аномалии в процессе закачки на отбор жидкости через НТК с дебитом, при котором регистрируют в НКТ 0,1 способ исследования нагнетательных скважин (варианты), патент № 2121571Tо, где способ исследования нагнетательных скважин (варианты), патент № 2121571Tо = Tм - TНКТ, Tм и TНКТ - температура в межтрубье и в НКТ перед началом отбора жидкости из скважины соответственно, при этом о нарушении герметичности НКТ судят по форме аномалии температуры при первом измерении, а о нарушении герметичности эксплуатационной колонны судят по отсутствию аномалии температуры при первом и по наличию аномалии при втором измерениях.

2. Способ по п.1, отличающийся тем, что в случае наличия при первом измерении аномалии, не связанной с нарушением герметичности НКТ, проводят третье измерение температуры после установления в НКТ выше аномалии квазистационарного распределения температуры в процессе закачки, при этом о нарушении герметичности НКТ судят по отсутствию аномалии при третьем измерении.

3. Способ исследования нагнетательных скважин, оборудованный насосно-компрессорными трубами (НКТ), включающий регистрацию изменения температуры вдоль ствола скважины через 0,5 - 5,0 ч после перевода ее с режима квазистационарного распределения температуры в НКТ выше аномалии в процессе закачки на отбор жидкости через НКТ, проведение в каждом выявленном интервале температурных аномалий регистрации изменения температуры при отборе пробы и сопоставление полученных термограмм, отличающийся тем, что в каждом выявленном интервале аномалии температуры проводят три измерения температуры, причем первое - после установления в НКТ выше аномалии квазистационарного распределения температуры в процессе закачки, а второе и третье - в течение времени, не превышающего 2 мин, и в интервале 5 - 12 мин соответственно, после перевода скважины с режима квазистационарного распределения температуры в НКТ в процессе закачки на отбор жидкости через НКТ с дебитом, при котором регистрируют в НКТ 0,1способ исследования нагнетательных скважин (варианты), патент № 2121571Tо, где способ исследования нагнетательных скважин (варианты), патент № 2121571Tо = Tм - TНКТ, Tм и TНКТ - температура в межтрубье и в НТК перед началом отбора жидкости из скважины соответственно, при этом о нарушении герметичности НКТ судят по отсутствию аномалии температуры при первом и по наличию аномалии при втором измерениях, а о нарушении герметичности эксплуатационной колонны судят по отсутствию аномалии температуры при первом и втором измерениях и по наличию аномалии при третьем.

Описание изобретения к патенту

Изобретение относится к термическим методам исследования нагнетательных скважин и может быть использовано при определении места нарушения герметичности насосно-компрессорных труб (НКТ), эксплуатационной колонны в интервалах, перекрытых НКТ, и при выявлении движения жидкости за обсадной колонной.

Известен способ определения места негерметичности эксплуатационной колонны в нагнетательной скважине в интервалах, перекрытых НКТ, по измерениям термометром вдоль ее ствола через 20-30 мин после смены режима закачки на отбор жидкости через НКТ /Назаров В.Ф. и др. Термометрия для контроля технического состояния нагнетательных скважин и температуры водоносных пластов. //Нефт.х-во, - 1987, - N 11. - с. 55-58/.

Недостатком способа является то, что по одному измерению термометром невозможно однозначно определить причину возникновения аномалии температуры - связана ли она с нарушением герметичности НКТ или эксплуатационной колонны или обусловлена нарушением температуры пласта вследствие закачки в него воды через нарушение герметичности обсадной колонны в соседней нагнетательной скважине.

Наиболее близким к предлагаемому является способ термических исследований нагнетательных скважин, заключающийся в следующем: проводят измерение температуры вдоль ствола через 0,5-5,0 ч после смены режима закачки на отбор; выделяют аномалии температуры; в каждом выявленном интервале температурных аномалий проводят регистрацию изменения температуры в течение времени, не превышающем t= 0,2R2/a после смены режима закачки на отбор, а продолжительность закачки жидкости определяют по формуле t=V/Q, где V - внутренний объем НКТ от устья до аномалии температуры; м3; Q - приемистость скважины, м3/сут; R - расстояние от НКТ до обсадной колонны; м; a - коэффициент температуропроводности среды, заполняющей межтрубное пространство, м/ч2 /А.С. N 1359435, кл. E 21 B 47/00, 1985/.

Недостатком способа является следующее:

- невозможно отличить нарушение герметичности НКТ от нарушения герметичности эксплуатационной колонны по одному измерению термометром, проведенному в течение времени, не превышающего t=0,2R2/a после смены режима закачки на отбор;

- при больших дебитах отбора жидкости через НКТ невозможно определить место нарушения герметичности эксплуатационной колонны вследствие того, что вклад радиальной составляющей коэффициента теплопроводности (полезной составляющей, несущей информацию об изменении температуры в межтрубье и породе) пренебрежимо мал в сравнении с конвективной (осевой) составляющей коэффициента теплопроводности потока жидкости в НКТ.

Техническим результатом заявляемого изобретения является повышение точности и однозначности определения мест нарушения герметичности НКТ и эксплуатационной колонны за счет использования методики временной фильтрации температурных аномалий, сформировавшихся в НКТ и в межтрубном пространстве после перевода скважины с режима квазистационарного распределения температуры в НКТ в процессе закачки на отбор жидкости через НКТ.

Технический результат достигается тем, что в известном способе исследования нагнетательных скважин, оборудованных НКТ, включающем регистрацию изменения температуры вдоль ствола скважины через 0,5-5,0 ч после перевода ее с режима квазистационарного распределения температуры в НКТ в процессе закачки на отбор жидкости через НКТ, проведение в каждом выявленном интервале температурных аномалий регистрации изменения температуры при отборе пробы и сопоставление полученных термограмм, в каждом выявленном интервале аномалии температуры проводят два измерения температуры, причем первое - в течение времени, не превышающего 2 мин, а второе - в интервале 5-12 мин после перевода скважины с режима закачки на отбор жидкости через НКТ с дебитом, при котором регистрируют в НКТ 0,1 способ исследования нагнетательных скважин (варианты), патент № 2121571 T0, где способ исследования нагнетательных скважин (варианты), патент № 2121571 T0=Tм-TНКТ, Tм и TНКТ - температура в межтрубье и в НКТ перед началом отбора жидкости из скважины соответственно, при этом о нарушении герметичности НКТ судят по форме аномалии температуры при первом измерении, а о нарушении герметичности эксплуатационной колонны судят по отсутствию аномалии при первом и по наличию аномалии температуры при втором измерениях.

Технический результат достигается также тем, что в способе по п. 1 в случае наличия при первом измерении аномалии, не связанной с нарушением герметичности НКТ, проводят третье измерение температуры после установления в НКТ выше аномалии квазистационарного распределения температуры в процессе закачки, при этом о нарушении герметичности НКТ судят по отсутствию аномалии при третьем измерении.

Технический результат также достигается тем, что в известном способе исследования нагнетательных скважин, оборудованных НКТ, включающем регистрацию изменения температуры вдоль ствола скважины через 0,5-5,0 ч после перевода ее с режима квазистационарного распределения температуры в НКТ в процессе закачки на отбор жидкости через НКТ, проведение в каждом выявленном интервале температурных аномалий регистрации изменения температуры при отборе пробы и сопоставление полученных термограмм, в каждом выявленном интервале аномалии температуры проводят три измерения температуры, причем первое - после установления в НКТ выше аномалии квазистационарного распределения температуры в процессе закачки, а второе и третье - в течение времени, не превышающего 2 мин, и в интервале 5-12 мин соответственно после перевода скважины с режима закачки на отбор жидкости через НКТ с дебитом, при котором регистрируют в НКТ 0,1 способ исследования нагнетательных скважин (варианты), патент № 2121571 T0, где способ исследования нагнетательных скважин (варианты), патент № 2121571 T0=Tм-TНКТ, Tм и TНКТ - температура в межтрубье и в НКТ перед началом отбора жидкости из скважины соответственно, при этом о нарушении герметичности НКТ судят по отсутствию аномалии при первом измерении и по наличию аномалии температуры при втором измерении, а о нарушении герметичности эксплуатационной колонны судят по отсутствию аномалии при первом и втором и по наличию аномалии температуры при третьем измерениях.

Возможность достижения технического результата обусловлена тем, что скорость распространения аномалии температуры имеет конечную величину, поэтому при соответствующей технологии проведения исследований в НКТ можно раздельно регистрировать на термограммах влияние НКТ, НКТ и межтрубья или НКТ, межтрубья и породы одновременно. По результатам этих временных измерений термометром определяем нарушена или не нарушена герметичность НКТ или эксплуатационной колонны, отсутствует или есть движение жидкости за эксплуатационной колонной.

Из научно-технической литературы и патентной документации не известно проведение трех измерений при отборе жидкости через НКТ из нагнетательной скважины, а также одного измерения термометром при закачке с целью определения места нарушения герметичности НКТ или эксплуатационной колонны в нагнетательной скважине. Однако, известно проведение регистрации серии термограмм ниже НКТ во времени в режиме закачки и отбора жидкости из скважины в процессе ее освоения (А.С. СССР N 987082, кл. E 21 B 47/00, 1980), где технический результат - повышение точности выявления работающих интервалов - достигается за счет увеличения полезной температурной аномалии.

Таким образом, заявляемое техническое решение соответствует критерию "изобретательский уровень" как новая совокупность существенных признаков, проявляющая новое техническое свойство.

На предлагаемых графических материалах представлены:

фиг. 1 - определение глубины (H, м) нарушения герметичности эксплуатационной колонны и НКТ по измерениям термометром, проведенным через различное время после перевода нагнетательной скважины с режима закачки на отбор воды через НКТ с дебитом Q = 10 м3/сут (пример практической реализации способа по варианту 1);

фиг. 2 - определение технического состояния нагнетательной скважины по измерениям термометром в процессе квазистационарного распределения температуры при закачке и по серии временных измерений термометром, проведенных после перевода скважины с режима закачки на отбор воды через НКТ к дебитом Q способ исследования нагнетательных скважин (варианты), патент № 2121571 10 м3/сут (пример практической реализации способа по варианту 3);

фиг. 3 - определение момента начала влияния межтрубья на температуру потока воды в НКТ с дебитом Q<12 м3/сут;

фиг. 4 - влияние дебита отбора воды из нагнетательной скважины на температуру потока в НКТ.

Способ осуществляют следующим образом:

а. Проводят основной замер термометром при подъеме от верхнего интервала перфорации до устья через tспособ исследования нагнетательных скважин (варианты), патент № 21215710,5 ч после перевода скважины с режима квазистационарного распределения температуры в НКТ в процессе закачки на отбор жидкости через НКТ с дебитом Qспособ исследования нагнетательных скважин (варианты), патент № 212157110-12 м3/сут. Если на этом замере нет аномалий температуры, то исследование термометром выше перфорированных пластов закончено. В этом случае заключение следующее: колонна и НКТ герметичны, движение жидкости за эксплуатационной колонной отсутствует.

б. Если на основном замере термометром имеются аномалии, то для выяснения причины их возникновения продолжают исследования. С этой целью нужно опустить термометр на глубину H1, которая находится на 50-70 м ниже аномалии температуры, отмеченной на основном замере, перевести скважину под закачку через НКТ. Через время tспособ исследования нагнетательных скважин (варианты), патент № 2121571V/Q (здесь V, м3 - внутренний объем НКТ в интервале H1-устье; Q, м3/сут - величина приемистости скважины) в интервале H1-устье устанавливается квазистационарное распределение температуры в процессе закачки. Далее последовательность операций распадается либо на варианты 1, 2, либо на вариант 3 (см. ниже п.п. в1, в2, в3 соответственно).

в.1. Перевести скважину с режима закачки на отбор воды через НКТ с дебитом Qспособ исследования нагнетательных скважин (варианты), патент № 212157110-12 м3/сут. Провести два измерения (временные) термометром при подъеме через время: первое - сразу, второе - 7-8 мин после начала отбора воды. Продолжительность каждого временного замера составляет 5-6 мин.

в. 2. Если на первом (а возможно и на втором) временном измерении, выполненном в пункте в.2, имеется аномалия температуры, отличающаяся по форме от нарушения герметичности НКТ, то в том же интервале глубин, в котором были зарегистрированы временные измерения, провести измерение термометром при подъеме прибора после установления в НКТ квазистационарного распределения температуры в процессе закачки.

в.3. Провести измерение термометром в процессе закачки при подъеме в течение 5-6 мин. Перевести скважину с режима закачки на отбор воды через НКТ с дебитом Qспособ исследования нагнетательных скважин (варианты), патент № 212157110-12 м3/сут. Начиная с глубины 50-70 м ниже аномалии температуры на основном измерении, провести два измерения (временные) термометром при подъеме через время: первое - сразу, второе - 7-8 мин после начала отбора воды. Продолжительность каждого временного измерения составляет 5-6 мин.

Скорость регистрации термограмм во всех этих способах определяется зависимостью: V[м/ч] = 3600/ способ исследования нагнетательных скважин (варианты), патент № 2121571, но не менее 2100 м/ч. Здесь способ исследования нагнетательных скважин (варианты), патент № 2121571[c] - постоянная времени термометра.

Если на основном измерении термометром, проведенном вдоль всего ствола выше воронки НКТ имеются несколько аномалий температуры, то для выяснения причины формирования аномалии необходимо провести измерения термометром на режимах скважины, указанных в п.п. б, в1 (вариант 1) или п.п. б, в2 (вариант 2), или п.п. в, в3 (вариант 3).

Эта методика - "методика временной фильтрации температурных аномалий" основана на конечной величине скорости распространения температурных сигналов. После прохождения фронта закачиваемой воды в скважине устанавливается квазистационарное распределение температуры. При отсутствии нарушения герметичности колонны распределение температуры как в межтрубье, так и в НКТ - монотонное и характеризует в основном скорость потока воды в НКТ. При нарушении герметичности колонны выше воронки НКТ распределение температуры в НКТ практически монотонное, а в межтрубье вблизи нарушения герметичности колонны нарушена монотонность.

После перевода скважины с режима закачки на отбор жидкости с дебитом Qспособ исследования нагнетательных скважин (варианты), патент № 212157110-12 м3/сут начинается процесс восстановления температуры в системе скважина-пласт. (При больших дебитах излива (Q>30 м3/сут) на распределение температуры в НКТ практически не сказывается влияние ни межтрубья, ни пород). В этот период распределение температуры вдоль радиуса в НКТ зависит от времени простоя скважины. Для определения времени простоя скважины используют формулу t=kспособ исследования нагнетательных скважин (варианты), патент № 2121571R2/a, где R - радиус НКТ, a - коэффициент температуропроводности жидкости в НКТ, k = способ исследования нагнетательных скважин (варианты), патент № 2121571T/способ исследования нагнетательных скважин (варианты), патент № 2121571T0 - относительная погрешность определения температуры в межтрубье, способ исследования нагнетательных скважин (варианты), патент № 2121571T = T(r,t)-Tм, способ исследования нагнетательных скважин (варианты), патент № 2121571 T0=T0-Tм, T0 - начальная температура в НКТ, Tм - начальная температура в межтрубье, T(r,t) - температура в НКТ. Время регистрации минимальной относительной амплитуды температуры в межтрубье определяется величиной чувствительности термометра и разностью способ исследования нагнетательных скважин (варианты), патент № 2121571 T0. Величина способ исследования нагнетательных скважин (варианты), патент № 2121571 T0 зависит от многих факторов, в том числе и от степени загрязнения стенок НКТ, которую практически невозможно определить. Поэтому время t определили экспериментально на основании многочисленных исследований в скважинах термометрами СТЛ-28 (диаметр прибора способ исследования нагнетательных скважин (варианты), патент № 2121571пр= 28 мм, диаметр трубки датчика способ исследования нагнетательных скважин (варианты), патент № 2121571д= 4 мм) и К-2-321М (способ исследования нагнетательных скважин (варианты), патент № 2121571пр= 36 мм, способ исследования нагнетательных скважин (варианты), патент № 2121571д= 4 мм). Эти исследования показали, что на регистрируемую прибором СТЛ-28 температуру в НКТ оказывают влияние: межтрубье через 2,5-3,5 мин; породы через 12-15 мин. При регистрации прибором К-2-321М на температуру в НКТ оказывают влияние межтрубье - через 3,5-4,5 мин, породы - через 15-18 мин.

На фиг. 1 приведен практический пример определения глубины нарушения герметичности колонны и НКТ в нагнетательной скважине в интервале, перекрытом НКТ. Здесь представлены термограммы, зарегистрированные прибором СТЛ-28: кр1 - основной замер; кр2-5 - временные замеры. В скважину спущены насосно-компрессорные трубы до глубины 1188 м. Через 86 мин после перевода скважины с режима закачки на отбор воды через НКТ с дебитом Q = 10-12 м3/сут проведен основной замер при подъеме прибора вдоль всей длины НКТ. На этом замере отмечаются аномалии температуры на глубинах: 494 и 1005 м. Для выяснения причины возникновения аномалий температуры проведены временные измерения. На временных измерениях после смены режима закачки на отбор воды через НКТ с дебитом Q способ исследования нагнетательных скважин (варианты), патент № 2121571 10-12 м3/сут зарегистрированы аномалии температуры на глубине 494 м через время: 0,5 мин - кр. 2; 6 мин - кр. 3, а на глубине 1003 м через время: 3 мин - кр. 4, 1 мин - кр. 5. Как видно из фиг. 1 на кр. 5 нет аномального изменения температуры. Это указывает на то, что НКТ в интервале исследования герметичны. На кр. 4 отмечается аномалия температуры на глубине 1003 м через 3 мин после перевода скважины с режима закачки на отбор. Через это время уже начинается влияние межтрубья на температуру в НКТ на расстоянии 12-13 мм по радиусу от его внутренней стенки (на этом расстоянии от стенки НКТ находится датчик термометра СТЛ-28). Таким образом, аномалия температуры на кр. 1 на глубине 1003 м обусловлена нарушением герметичности колонны. На временных измерениях на глубине 494 м отмечается аномалия температуры уже через 0,5 мин после перевода скважины с режима закачки на отбор воды через НКТ с дебитом Q способ исследования нагнетательных скважин (варианты), патент № 2121571 10-12 м3/сут. Это указывает на то, что аномалия температуры на основном измерении на глубине 494 м связана с нарушением герметичности НКТ.

Описанный здесь способ предполагает, что в процессе установившегося режима закачки на распределение температуры вдоль ствола скважины практически не оказывают влияния ни межтрубье, ни горные породы. Это условие наблюдается при относительно большой величине скорости потока воды. Как показывают эксперименты, эта скорость потока в НКТ диаметром способ исследования нагнетательных скважин (варианты), патент № 2121571 = 2,5" должна быть больше 400 м/ч (Q > 30 м3/сут). Если величина приемистости скважины Q < 10-12 м3/сут, то на распределение температуры в НКТ ( способ исследования нагнетательных скважин (варианты), патент № 2121571 способ исследования нагнетательных скважин (варианты), патент № 2121571 2,5") существенное влияние оказывает радиальная составляющая коэффициента теплопроводности, то есть на измерении термометром в НКТ в процессе закачки отмечается аномальное изменение температуры в межтрубье и породах. Так как аномалия температуры в НКТ имеется уже в процессе закачки, то она будет отмечаться на всех временных измерениях термометром, проведенных после перевода скважины с режима закачки на отбор воды через НКТ с дебитом Q < 10-12 м3/сут. Если аномалия температуры (на временном измерении) зарегистрирована через время t<2 мин после перевода скважины с режима закачки на отбор воды, то согласно вышеприведенной "методике временной фильтрации температурных аномалий" это указывает на нарушение герметичности НКТ, а в действительности НКТ могут быть герметичны. Для однозначного определения технического состояния скважины вне зависимости от величины приемистости скважины необходимо провести исследования термометром по технологии, которая описана в третьем варианте.

На фиг. 2 приведен пример практической реализации способа в нагнетательной скважине. Обсадная колонна перфорирована в интервале глубин: 2622.4-2631.4 м. Закачка и отбор воды из скважины проводятся через НКТ. Воронка НКТ находится на глубине 2595 м.

Выполнен следующий комплекс работ. Проведено измерение термометром в простаивающей одни сутки скважине (см. кр. 1, рис. 2). Затем перевели скважину с режима покоя под закачку. После наступления квазистационарного распределения температуры вдоль всего ствола перевели скважину на отбор воды с дебитом Q способ исследования нагнетательных скважин (варианты), патент № 2121571 10 м3/сут. Через 30 мин после начала отбора воды начали регистрацию термгограммы (кр. 2) при подъеме со скоростью V = 3600/ способ исследования нагнетательных скважин (варианты), патент № 2121571 м/ч. в интервале глубин: 2625-0 м. Для выяснения причины возникновения аномалии на термограмме (см. кр. 2, фиг. 2) в интервале глубин: 650-860 м провели следующие операции: опустили термометр на глубину 850 м и пустили скважину под закачку; после наступления квазистационарного распределения температуры в скважине при закачке выше 850 м зарегистрировали термограмму (кр. 3) в интервале: 850-650 м; опустили термометр до глубины 850 м, перевели скважину с режима закачки на отбор воды из скважины через НКТ с дебитом Q способ исследования нагнетательных скважин (варианты), патент № 2121571 10 м3/сут; зарегистрировали две термограммы при подъеме в интервале 860-660 м: первую - сразу (кр. 4), вторую - через 5 мин (кр. 5) после начала отбора воды.

На всех термограммах, зарегистрированных как в остановленной скважине, так при отборе и закачке, отмечается аномальное изменение температуры в интервале глубин: 835-760 м. Так как аномальное изменение температуры на глубине 835 м отмечается уже через 0,5 мин после смены режима закачки на отбор воды (см. кр. 4, фиг. 2), то это указывает либо на нарушение герметичности НКТ (при регистрации прибором с диаметром 36 мм влияние межтрубного пространства на распределение температуры в НКТ начинает сказываться через 3,5-4,5 мин после смены режима закачки на отбор воды через НКТ), либо на то, что межтрубье и порода оказывают влияние на температуру в НКТ как при отборе, так и при закачке (см. кр. 3, фиг. 2) вследствие малой величины приемистости скважины. В данном случае справедливо последнее утверждение, так как в противном случае градиент температуры по абсолютной величине в процессе закачки ниже глубины 835 м должен быть больше, чем в вышерасположенной части скважины, а этого в действительности нет. Следовательно, аномалия температуры в интервале глубин 860-660 м не обусловлена нарушением герметичности НКТ или колонны в исследуемой скважине, а связана с нарушением технического состояния в соседней нагнетательной скважине. Это же заключение следует из результатов измерения температуры в длительное время (приблизительно одни сутки) простаивающей скважине, так как кривую распределения температуры выше и ниже аномалии охлаждения можно аппроксимировать одной и той же функцией (см. фиг. 2, кр. 3).

На фиг. 3 приведен пример определения времени начала влияния межтрубья на температуру в НКТ, регистрируемую прибором СТЛ-28 (способ исследования нагнетательных скважин (варианты), патент № 2121571пр= 28 мм). Все три измерения проведены при подъеме прибора вдоль ствола нагнетательной скважины со скоростью V = 3600-4500 м/ч. Кривые 1 и 2 (см. фиг. 3, а) зарегистрированы в НКТ после перевода скважины с режима закачки на отбор воды через НКТ с дебитом Q способ исследования нагнетательных скважин (варианты), патент № 2121571 10 м3/сут. Первая из этих кривых зарегистрирована в интервале 1280-0 м через 25 мин после начала отбора, вторая - в интервале 358-0 м сразу после начала отбора. Кривая 3 (см. фиг. 3, б) зарегистрирована после извлечения из скважины НКТ. Этот замер проведен в интервале 1300-0 м через 20 мин после начала отбора. Слева от кривых приведена геометрия потока воды в скважине во время измерения температуры вдоль ствола.

Из результатов исследований (см. фиг. 3, а), следует, что влияние межтрубья на температуру в НКТ на расстоянии 12-13 мм от ее стенки отмечается через время 2,3 < t < 4 мин. Таким образом, межтрубье не оказывает влияния на температуру в НКТ через время t < 2 мин после смены режима закачки на отбор воды через НКТ в нагнетательной скважине при регистрации прибором СТЛ-28. Кроме того, заметим, что по этим двум замерам (см. кривые 1 и 2) невозможно дать однозначное заключение о причине формирования аномалии температуры на глубине 220 м: то ли она связана с нарушением герметичности колонны, то ли с движением жидкости за обсадной колонной. Также невозможно дать однозначное заключение о причине формирования аномалий температуры на глубинах 95 и 80 м: то ли одна из них или обе вместе связаны с нарушением герметичности НКТ, то ли с нарушением герметичности эксплуатационной колонны. Для выяснения причины формирования этих аномалий надо было: 1) измерение температуры вблизи глубины 220 м провести (согласно предлагаемому способу) через 5-12 мин после перевода скважины с режима закачки на отбор жидкости через НКТ с дебитом Q < 10-12 м3/сут (практически технология проведения этого измерения была бы такой: сразу после окончания регистрации кривой 2 опустить прибор в течение 2-2,5 мин с глубины 50 м до глубины ~300 м и одновременно с этим начать регистрацию термограммы при подъеме прибора со скоростью 3600-4500 м/ч в процессе отбора жидкости); 2) измерение температуры вблизи глубин 80 и 95 м провести через время t < 2 мин после перевода скважины с режима закачки на отбор жидкости через НКТ с дебитом Q < 10-12 м3/сут.

На фиг. 4 приведен пример влияния дебита отбора воды из скважины на температуру потока жидкости в НКТ. Здесь представлены термограммы, зарегистрированные в НКТ через 20 (кривая 1) и 25 мин (кривая 2) после перевода нагнетательной скважины с режима закачки на отбор воды через НКТ с дебитом 70 м3/сут (кривая 1) и 3 м3/сут (кривая 2)). Из фиг. 4 видно, что на кривой 2 отмечается в интервале глубин 1705-1748 аномалия охлаждения, амплитуда которой составляет более 1oC. В то же время на кр. 1 аномалия температуры в этом интервале отсутствует. Это указывает на то, что при большом дебите отбора (70 м3/сут) породы в интервале 1705-1748 м не оказывают влияния на температуру потока воды в НКТ. Как впоследствии выяснилось, источником аномалии температуры в породе в этом интервале была закачка воды через нарушение герметичности колонны в соседней нагнетательной скважине.

Класс E21B47/00 Исследование буровых скважин

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ передачи информации из скважины по электрическому каналу связи и устройство для его осуществления -  патент 2528771 (20.09.2014)
способ исследования скважины -  патент 2528307 (10.09.2014)
наложение форм акустических сигналов с использованием группирования по азимутальным углам и/или отклонениям каротажного зонда -  патент 2528279 (10.09.2014)
гироинерциальный модуль гироскопического инклинометра -  патент 2528105 (10.09.2014)
устройство и способ доставки геофизических приборов в горизонтальные скважины -  патент 2527971 (10.09.2014)
способ наземного приема-передачи информации в процессе бурения и устройство для его реализации -  патент 2527962 (10.09.2014)
способ исследования скважины -  патент 2527960 (10.09.2014)
способ газодинамического исследования скважины -  патент 2527525 (10.09.2014)
способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)

Класс E21B47/10 определение места оттока, притока или колебаний жидкости 

способ исследования скважины -  патент 2527960 (10.09.2014)
способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)
способ контроля за процессом обводнения газовой скважины -  патент 2526965 (27.08.2014)
способ определения герметичности подземных хранилищ газа -  патент 2526434 (20.08.2014)
способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин -  патент 2521623 (10.07.2014)
способ определения обводненности продукции нефтедобывающей скважины -  патент 2520251 (20.06.2014)
устройство для определения интервалов водопритока и их изоляции в открытых стволах многозабойных горизонтальных скважин -  патент 2514009 (27.04.2014)
способ исследования многозабойной горизонтальной скважины -  патент 2513961 (20.04.2014)
способ определения остаточного содержания газа в жидкости -  патент 2513892 (20.04.2014)
устройство для измерения дебита скважин -  патент 2513891 (20.04.2014)

Класс E21B47/06 измерение температуры или давления

устройство для пофазного замера физических параметров флюида в горизонтальной скважине -  патент 2523335 (20.07.2014)
способ определения давления насыщения нефти газом -  патент 2521091 (27.06.2014)
система и способ оптимизирования добычи в скважине -  патент 2520187 (20.06.2014)
способ определения забойного давления в нефтяной скважине, оборудованной погружным электронасосом -  патент 2515666 (20.05.2014)
способ мониторинга внутрискважинных параметров (варианты) и система управления процессом добычи нефти -  патент 2509888 (20.03.2014)
способ определения профиля притока и параметров околоскважинного пространства в многопластовой скважине -  патент 2505672 (27.01.2014)
способ исследования технического состояния скважины -  патент 2500886 (10.12.2013)
аппаратура для исследования скважин -  патент 2500885 (10.12.2013)
способ гидрогазодинамических исследований скважин -  патент 2490449 (20.08.2013)
способ вызова притока пластового флюида из скважины -  патент 2485305 (20.06.2013)
Наверх