способ упрочнения твердосплавного инструмента

Классы МПК:C21D1/09 непосредственным действием электрической или волновой энергии; облучением частицами
B22F3/24 последующая обработка заготовок или изделий 
Автор(ы):, , , , , , ,
Патентообладатель(и):Институт сильноточной электроники СО РАН
Приоритеты:
подача заявки:
1997-04-14
публикация патента:

Рабочую поверхность инструмента многократно облучают импульсами сильноточного электронного пучка с длительностью импульса 2 - 3 мкс, энергией электронов 10 - 30 кэВ, плотностью энергии в зависимости от химического состава твердого сплава в интервале 0,8 - 5 Дж/см2 и числом импульсов 5 - 10. Для дополнительного увеличения износостойкости инструмента после облучения его подвергают отжигу в вакууме при 900oC в течение 1,5 - 2,0 ч. Изобретение позволяет увеличить проточные характеристики приповерхностного слоя и повысить износостойкость инструмента в 2 - 3 раза. 1 ил.
Рисунок 1

Формула изобретения

1 1. Способ упрочнения твердосплавного инструмента преимущественно групп ВК и ТК, включающий облучение рабочих поверхностей инструмента импульсным сильноточным пучком заряженных частиц, отличающийся тем, что облучение проводят импульсами сильноточного электронного пучка длительностью 2 - 3 мкс, с энергией электронов 10 - 30 кэВ, плотностью энергии 0,8 - 5 Дж/см2 и числом импульсов в серии 5 - 10. 2 2. Способ по п.1, отличающийся тем, что после облучения осуществляют отжиг инструмента в вакууме при 850 - 950способ упрочнения твердосплавного инструмента, патент № 2118381C в течение 1,5 - 2 ч.

Описание изобретения к патенту

Изобретение относится к технологии поверхностной термической обработки инструментальных материалов и изделий из них концентрированными потоками энергии и может быть использовано в машиностроении для упрочнения инструмента.

Наиболее близким по технической сущности является способ обработки твердых сплавов на основе карбида вольфрама - кобальта ВК8 и ВК10ХОМ, описанный в [1], который заключается в том, что для увеличения износостойкости твердосплавного режущего инструмента его рабочую поверхность облучают мощным ионным пучком состава 70% C+ + 30% H+ с длительностью 50 нс. Для получения необходимых значений плотности тока на поверхности (до 150 А/см2) и, соответственно, требуемых значений плотности энергии пучка (2 - 3 Дж/см2) амплитуда ускоряющего напряжения в ионных источника данного типа составляет обычно способ упрочнения твердосплавного инструмента, патент № 2118381 30 кэВ [1, 2]. Недостатками данного способа являются необходимость защиты от рентгеновского излучения, повышенный уровень которого связан с наличием паразитной электронной нагрузки в сильноточных диодах, используемых для формирования мощных ионных пучков [3]; связанная с этим же необходимость больших затрат на оборудование помещений для ускорителя и пультовой [4]; наличие микрократеров на облученной поверхности [5], являющихся концентраторами напряжений и, следовательно, очагами разрушения (повышенная склонность к кратерообразованию связана с короткой длительностью импульса и, соответственно, с малым временем жизни расплава на поверхности, а также с возможной филаментацией пучка); высокий уровень действующих и остаточных напряжений, связанный с быстрым (способ упрочнения твердосплавного инструмента, патент № 2118381 10-7 c) вводом энергии в приповерхностный слой.

Целью настоящего изобретения является повышение эффективности и обеспечения радиационной безопасности процесса упрочнения твердосплавного режущего инструмента на основе WC-CO и WC-TiC-Co путем использования вместо источника мощных ионных пучков источника импульсных электронных пучков, не требующего дополнительной радиационной защиты и позволяющего из-за длительности импульса и отсутствия локальных неоднородностей плотности тока по сечению пучка избежать кратерообразования и снизить уровень остаточных напряжений.

Сущность изобретения заключается в том, что для упрочнения твердосплавного инструмента, повышения эффективности и обеспечения радиационной безопасности процесса рабочую поверхность инструмента многократно нагревают импульсами низкоэнергетичного сильноточного электронного пучка (НСЭП) с длительностью импульса 2 - 3 мкс, энергией электронов 10 - 30 кэВ, плотностью энергии в зависимости от химического состава твердого сплава в интервале 0,8 - 5 Дж/см2, числом импульсов 5 - 10. Необходимую плотность энергии выбирают в таком интервале, чтобы за время импульса происходило частичное взаимное жидкофазное растворение зерен карбидных и связывающей фаз на межфазных границах (контактное плавление) с образованием новых карбидных фаз, но отсутствовало полное переплавление этих фаз в приповерхностном слое. При таком выборе плотности энергии микротвердость рабочих поверхностей инструмента после облучения возрастает на 15 - 20%, а его износостойкость - в 2 - 3 раза.

Для дополнительного увеличения износостойкости инструмента после облучения его подвергают отжигу в вакууме при 900oC в течение 1,5 - 2 ч.

Согласно нормам радиационной безопасности [5] источники электронов, в которых ускоряющее напряжение не превышает 100 кВ, а следовательно, и источник НСЭП, используемый в предлагаемом способе, относятся к источникам неиспользованного рентгеновского излучения и не требуют специальных помещений для самих источников и пультовой. Напротив, в источнике мощных ионных пучков, используемом в способе-прототипе [1], ускоряющее напряжение превышает 100 кВ, что требует специальных помещений. Кроме того, при напряжениях до 30 кВ, используемых в источнике НСЭП, применяются более простые и более надежные элементы высоковольтной техники, как правило, промышленного изготовления. В совокупности эти обстоятельства обуславливают более высокую эффективность предлагаемого способа по сравнению с прототипом, а именно его меньшую стоимость, большую простоту и надежность.

Выбор рабочего интервала плотностей энергии Es , обеспечивающего эффективное упрочнение твердосплавного инструмента, основан на результатах исследования структуры и свойств твердых сплавов, облученных НСЭП, методами оптической и растровой электронной микроскопии, рентгеноструктурного анализа и измерений микротвердости. Эти исследования показали, что с ростом энергии выше порога контактного плавления карбидных и связующей фаз, являющегося нижней границей интервала Es , происходит постепенное увеличение размеров областей жидкофазного растворения этих фаз, сопровождающееся ростом микротвердости, без изменения фазового состава сплава. При некотором пороговом значении Es , являющимся верхней границей интервала Es , происходит практически полное переплавление карбидных зерен со связкой, а степень упрочнения поверхности достигает максимума (способ упрочнения твердосплавного инструмента, патент № 211838120%) . Увеличение микротвердости может быть связано с измельчением зерна кобальтовой связки за счет дополнительного растворения в ней вольфрама и углерода при импульсном плавлении. Дальнейшее увеличение Es приводит к возникновению микрократеров в местах с повышенной объемной долей легкоплавкой связующей фазы, формированию микротрещин и падению микротвердости. Последнее связано с образованием в этих режимах облучения метастабильных карбидов с ГЦК решеткой, обладающих низкой прочностью.

Механизм повышения износостойкости твердосплавного режущего инструмента при воздействии НСЭП можно представить следующим образом. Известно, что износ инструмента при высоких температурах и уровнях пластической деформации, реализуемых в процессе резания, связан в основном с диффузией: кобальт выносится на поверхность, а компоненты обрабатываемого материала (например, железо из стали) диффундируют в объем, уменьшая прочность связующей фазы и приводя к выкрашиванию карбидных зерен.

В результате импульсного контактного плавления карбидных и связующих фаз и последующей сверхбыстрой закалки из жидкого состояния концентрация вольфрама и углерода (в сплавах группы ВК) в кобальтовой связке существенно превышает значения, соответствующие растворимости этих элементов в твердом состоянии. Последнее, в свою очередь, затрудняет диффузию компонентов обрабатываемого материала в связку в процессе резания и препятствует тем самым охрупчиванию поверхностных слоев сплава в процессе эксплуатации инструмента. С другой стороны, контактное плавление способствует повышению прочности сцепления фаз, поскольку в результате взаимного жидкофазного растворения компонентов на межфазных границах формируются градиентные структуры, обеспечивающие более плавное изменение структуры и свойств на этих границах. В результате подавления диффузионных процессов в зоне контакта с обрабатываемым материалом и увеличения прочностных характеристик приповерхностного слоя износостойкость инструмента, облученного в указанных выше режимах, повышается в 2 - 3 раза по сравнению с необлученным.

Дополнительное увеличение износостойкости инструмента, подвергнутого облучению НСЭП, достигаемое путем использования последующего отжига в вакууме, связано со снятием остаточных напряжений, формируемых в приповерхностном слое при импульсном электронно-лучевом нагреве.

Пример. Режущие пластины из сплава Т15К6 помещали в рабочую камеру электронно-лучевой установки. Рабочие поверхности инструмента облучали НСЭП с длительностью импульса 2 - 3 мкс, энергией электронов 10 - 30 кэВ, плотностью энергии 1,2 - 2,0 Дж/см2. Число импульсов в серии 5. После облучения часть пластин подвергали отжигу в вакууме при температуре 900oC в течение 2 ч.

Затем режущие пластины, подвергнутые обработке, а также пластины в исходном состоянии (состоянии поставки) испытывали на токарном станке при наружном продольном точении стали 40Х при скорости резания 300 м/с, подаче 0,14 мм/об, глубине резания 1,5 мм. Все испытываемые пластины принадлежали к одной партии изготовления. Для сравнения износостойкости исходных и облученных пластин строили зависимости фаски износа по задней грани инструмента h3 от пути резания L. На чертеже показаны такие зависимости для необлученной пластины (кривая 1) и облученных при Es = 1,2 и 2 Дж/см2 (кривые 2 и 3) соответственно. Обработка этих зависимостей показала, что стойкость облученного инструмента на стадии нормального износа возросла в 2 - 3 раза по сравнению с необлученным. Последующий отжиг в вакууме (900oC, 2 ч) облученного инструмента приводит к росту его износостойкости в 3 - 5 по сравнению с необлученным (кривая 4 на чертеже).

Источники информации

1. Полещенко К.Н., Поворознюк С.Н., Вершинин Г.А. Влияние условий ионно-лучевого воздействия на структуру и свойства твердых сплавов. Поверхность. Физика, химия, механика. 1995, N 4, c. 114-116.

2. Remnev G.E. and Shulov V.A. Application of high-power ion beams for technology // Laser and Particle Beams, 1993, v. 11, N 4, pp. 707-731.

3. Быстрицкий В.М., Диденко А.Н. Мощные ионные пучки. - М.: Энергоатомиздат, 1984, 152 с.

4. Нормы радиационной безопасности НРБ-96. Утверждены постановлением Госкомсанэпиднадзора РФ N 7 от 19.04.96.

5. Полещенко К.Н., Геринг Г.И., Вершинин Г.А. и др. Особенности модифицирования сплавов WC-Co слаботочными и сильноточными ионными пучками. Тезисы докл. IV Всерос. конф. по модификации свойств констр. матер. пучками заряженных частиц. Томск, 1996, с.268-269.

Класс C21D1/09 непосредственным действием электрической или волновой энергии; облучением частицами

стенд лазерной закалки опорной поверхности игл вращения высокоскоростных центрифуг -  патент 2527979 (10.09.2014)
способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ повышения физико-механических свойств инструментальных и конструкционных материалов методом объемного импульсного лазерного упрочнения (оилу) -  патент 2517632 (27.05.2014)
способ производства листовой электротехнической анизотропной стали и листовая электротехническая анизотропная сталь -  патент 2514559 (27.04.2014)
способ формирования износостойкого покрытия деталей -  патент 2510319 (27.03.2014)
лист электротехнической стали с ориентированной зеренной структурой -  патент 2509813 (20.03.2014)
текстурованный лист электротехнической стали и способ его получения -  патент 2509163 (10.03.2014)
способ улучшения магнитных свойств анизотропной электротехнической стали лазерной обработкой -  патент 2501866 (20.12.2013)
способ упрочнения изделий из твердых сплавов -  патент 2501865 (20.12.2013)
способ обработки изделий из высокоуглеродистых легированных сплавов -  патент 2494154 (27.09.2013)

Класс B22F3/24 последующая обработка заготовок или изделий 

способ получения режущего инструмента из карбидсодержащих сплавов вольфрамовой (вк) и титано-вольфрамовой (тк) групп -  патент 2528539 (20.09.2014)
способ стабилизации механических характеристик изделий из твердых сплавов -  патент 2525873 (20.08.2014)
способ улучшения обрабатываемости металлопорошковых сплавов -  патент 2519434 (10.06.2014)
способ повышения физико-механических свойств инструментальных и конструкционных материалов методом объемного импульсного лазерного упрочнения (оилу) -  патент 2517632 (27.05.2014)
способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов -  патент 2516267 (20.05.2014)
способ получения износостойкого антифрикционного самосмазывающегося сплава -  патент 2492964 (20.09.2013)
способ изготовления постоянного магнита и постоянный магнит -  патент 2490745 (20.08.2013)
выполненная с увеличенной вязкостью буровая коронка инструмента для бурения породы и способ увеличения вязкости таких буровых коронок -  патент 2488681 (27.07.2013)
способ термического упрочнения деталей из порошковых материалов на основе железа -  патент 2486030 (27.06.2013)
способ получения деталей газотурбинных двигателей с длительным ресурсом эксплуатации из порошковых никелевых сплавов -  патент 2483835 (10.06.2013)
Наверх