устройство очистки поверхности материала от оксидной пленки

Классы МПК:C23F4/00 Способы удаления металлического материала с поверхностей, не предусмотренные в группах  1/00 или  3/00
B23K26/14 с использованием потока, например струи газа, направленного в место обработки, в сочетании с лазерным лучом
Автор(ы):, ,
Патентообладатель(и):Слипченко Николай Николаевич,
Михайленко Сергей Анатольевич,
Крымский Михаил Ильич
Приоритеты:
подача заявки:
1997-05-15
публикация патента:

Изобретение относится к области лазерной технологии и может быть использовано при восстановлении чистоты поверхности материалов за счет удаления коррозии, масляных пленок и пр., а также при дезактивации радиационно-загрязненных материалов за счет испарения поверхностной оксидной пленки, концентрирующей основную массу нуклидов. Технический результат достигается за счет того, что в устройство очистки поверхности материала дополнительно введен спектральный датчик определения относительного содержания окиси металла в плазменном факеле на обрабатываемой поверхности, причем выход датчика электрически связан с механизмом перемещения материала и высоковольтным входом электрооптического модулятора добротности, а оптическое устройство фокусировки излучения выполнено в виде последовательно расположенных соосно с лазерным излучением вогнутого сферического зеркала с центральным отверстием, диаметр которого больше апертуры излучения лазера, и отражающего конуса с вершиной обращенной к отверстию вогнутого зеркала. 1 ил.
Рисунок 1

Формула изобретения

Устройство очистки поверхности материала от оксидной пленки, содержащее частотно-импульсный лазер, оптическое устройство фокусировки излучения на очищаемую поверхность, отличающееся тем, что оно снабжено механизмом перемещения материала относительно оптической оси лазера, системой управления, спектральным датчиком определения относительного содержания окиси металла в плазменном факеле на обрабатываемой поверхности, а в резонатор частотно-импульсного лазера введен электрооптический модулятор добротности, причем выход датчика через систему управления электрически соединен с механизмом перемещения материала и высоковольтным входом электрического модулятора добротности, а оптическое устройство фокусировки излучения выполнено в виде последовательно расположенных соосно с оптической осью лазера, вогнутого сферического зеркала с центральным отверстием, диаметр которого больше апертуры луча лазера, и отражающего конуса с вершиной, обращенной к отверстию вогнутого зеркала.

Описание изобретения к патенту

Изобретение относится к области лазерной технологии и может быть использовано при восстановлении чистоты поверхности материалов за счет удаления коррозии, масляных пленок и пр., а также при дезактивации радиационно- загрязненных материалов за счет испарения поверхностной оксидной пленки, концентрирующей основную массу нуклидов.

Известно устройство очистки поверхности металла [1].

Однако это устройство не позволяет снимать оксидные пленки с металлических поверхностей. Именно в таких пленках накапливаются радионуклиды в отложениях на внутренних поверхностях оборудования АЭС. Известное устройство очистки обеспечивает режим плавления, а не испарения, что не приводит к устранению радиоактивных оксидных пленок и не обеспечивает тем самым снижение уровня радиационной активности.

Наиболее близким по технической сущности (прототипом) является устройство очистки поверхности материала от оксидной пленки, содержащее частотно-импульсный лазер с электрооптическим модулятором добротности, оптическое устройство фокусировки излучения на оптическую поверхность и механизм перемещения материала относительно излучения лазера[2].

Однако это устройство не имеет достаточно высокую (для технологических целей) эффективность и производительность очистки.

Технический результат достигается за счет того, что в устройство очистки поверхности материала дополнительно введен спектральный датчик определения относительного содержания окиси металла в плазменном факеле на обрабатываемой поверхности, причем выход датчика электрически связан с механизмом перемещения материала и высоковольтным входом электрооптического модулятора добротности, а оптическое устройство фокусировки излучения выполнено в виде последовательно расположенных соосно с лазерным излучением вогнутого сферического зеркала с центральным отверстием, диаметр которого больше апертуры излучения лазера, и отражающего конуса с вершиной, обращенной к отверстию вогнутого зеркала.

Сущность изобретения поясняется чертежом, где цифрами обозначены: 1 - частотно-импульсный лазер, 2 - электрооптический модулятор добротности, 3 - спектральный датчик определения относительного содержания, 4 - очищаемая поверхность, 5 - механизм перемещения поверхности материала относительно излучения лазера, 6 - зеркала, составляющие резонатора лазера, 7 - вогнутое сферическое зеркало с центральным отверстием, 8 - отражающий конус, 9 - система управления.

Устройство работает следующим образом. Система управления 9 устройством подает сигнал на запуск лазера 1 и электрооптический модулятор 2. Лазерное излучение поступает на конический отражатель 8, при отражении от которого формируется пучок в виде кольца постоянной толщины и увеличивающегося радиуса. Это излучение перехватывается вогнутым сферическим зеркалом 7 и фокусируется на поверхность очищаемого материала 4 в виде тонкого кольца, диаметр которого зависит от расстояния между конусом 8 и вогнутым зеркалом 7.

Излучение поглощается в тонком поверхностном слое оксидной пленки, испаряя ее материал. Вылетающие пары навстречу излучению создают импульс давления на поверхность материала. Просто испарить весь слой оксидной пленки очень долго и не выгодно энергетически. Наиболее эффективным режимом очистки является "откольный" режим, когда пленка удаляется с поверхности не в виде отдельных атомов и молекул (режим "испарения"), а в виде кусочков пленки размером в десятки микрон. В этом случае не надо затрачивать энергию на отрыв атомов и молекул друг от друга. Для осуществления "откольного" режима надо создать очень короткий (устройство очистки поверхности материала от оксидной пленки, патент № 2112078 10 с) и мощный импульс давления на поверхности материала. Наиболее эффективно это можно осуществить используя "кумулятивный" механизм воздействия. Он состоит в том, что на поверхность фокусируют излучение в виде кольца, образуя такой же формы импульс давления на материал, после чего на внутреннем крае кольца образуется ударная волна, сходящаяся в центр кольца, где создается очень высокое давление, происходит разрыв связей между материалом пленки и основного материала и кусочки пленки "отскакивают" от поверхности материала. "Откольный" режим нельзя достичь, фокусируя излучение в виде сплошного пятна, потому что не достигается достаточной величины импульс давления, т.к. при увеличенной интенсивности падающего излучения режим "выровненного" давления, который является наиболее эффективным по преобразованию энергии излучения в импульс давления на преграде, переходит в "детонационный" сразу, т. е. образуется в парах материала плотный (детонационный) слой паров и воздуха, который распространяется навстречу излучению и полностью экранирует излучение. Импульс давления при этом резко уменьшается и "откольный" режим при этом достигается. В нашем случае в самом кольце, куда поступает излучение, "откольный" режим тоже не достигается, а осуществляется режим "выровненного" давления, самый эффективный по преобразованию энергии излучения в импульс давления. Однако в центре кольца при схождении ударной волны импульс давления усиливается в сотни раз и достигается "откольный" режим самый эффективный по очистке.

Далее поверхность очищаемого материала перемещается относительно излучения лазера, осуществляя очистку всей поверхности. Спектральный датчик определения относительного содержания окиси металла в плазменном факеле следит за чистотой поверхности, чтобы толщина оксидной пленки не превышала допустимых значений (устройство очистки поверхности материала от оксидной пленки, патент № 2112078 десятой доли микрона). Этот датчик представляет собой стилометр с двумя фотоэлементами. В нем используется метод внутреннего стандарта, заключающийся в измерении отношения интенсивностей линии окиси металла и линии сравнения чистого металла, излучаемыми одним и тем же источником света (факелом). Это автоматически исключает зависимость результатов измерений от колебаний яркости факела и измерений других факторов, общих для всех спектральный линий. В случае превышения над допустимым значением скорость перемещения уменьшается, а также (если недостаточная величина снимаемой пленки за один импульс) сигнал с системы управления поступает на электрооптический модулятор 2 и длительность импульса генерации лазера уменьшается, увеличивая при этом мощность падающего на очищаемую поверхность излучения.

Класс C23F4/00 Способы удаления металлического материала с поверхностей, не предусмотренные в группах  1/00 или  3/00

способ обработки поверхности изделий дуговым разрядом в вакууме -  патент 2509824 (20.03.2014)
способ обработки поверхности изделий дуговым разрядом в вакууме и устройство для его осуществления -  патент 2457282 (27.07.2012)
способ удаления органических остатков с пьезоэлектрических подложек -  патент 2406785 (20.12.2010)
способ очистки поверхности крупногабаритных металлических изделий дуговым разрядом и устройство для его осуществления -  патент 2374046 (27.11.2009)
способ зачистки поверхности от ржавчины -  патент 2361708 (20.07.2009)
способ электродуговой обработки поверхности металлических изделий -  патент 2355520 (20.05.2009)
способ обработки поверхности металлической полосы и устройство для его реализации -  патент 2348742 (10.03.2009)
способ электродуговой очистки поверхности металлических изделий -  патент 2347010 (20.02.2009)
экстрагент для выделения ионов металлов из водных растворов -  патент 2333028 (10.09.2008)
способ электрополировки металлов в газовой среде -  патент 2252273 (20.05.2005)

Класс B23K26/14 с использованием потока, например струи газа, направленного в место обработки, в сочетании с лазерным лучом

способ лазерной сварки встык листов из стали с содержанием бора 1,3-3,6% -  патент 2510627 (10.04.2014)
способ получения теплостойкого покрытия -  патент 2492980 (20.09.2013)
способ газолазерной резки крупногабаритных деталей из композиционных материалов и устройство для его осуществления -  патент 2471600 (10.01.2013)
способ газолазерной резки материалов и установка для газолазерной резки -  патент 2466842 (20.11.2012)
способ и устройство для сварки деталей из термостойких жаропрочных сплавов -  патент 2466841 (20.11.2012)
способ лазерного раскроя металлического листового материала -  патент 2459690 (27.08.2012)
лазерное формообразование механических микроструктур на поверхности подложки -  патент 2452792 (10.06.2012)
способ лазерно-дуговой сварки плавящимся электродом алюминия и алюминиевых сплавов -  патент 2440221 (20.01.2012)
способ лазерной термообработки сложных пространственных поверхностей крупногабаритных деталей -  патент 2425894 (10.08.2011)
сварочный инструмент -  патент 2393945 (10.07.2010)
Наверх