способ получения маточной смеси для озоностойкой резины на основе бутадиеннитрильного каучука

Классы МПК:C08L9/02 сополимеры с акрилонитрилом
C08L27/06 гомополимеры или сополимеры винилхлорида
C08L63/02 простые полиглицидные эфиры бисфенолов
Автор(ы):, , ,
Патентообладатель(и):Попов Анатолий Анатольевич,
Ливанова Надежда Михайловна,
Богаевская Тамара Анатольевна,
Фармаковская Маргарита Павловна
Приоритеты:
подача заявки:
1995-06-08
публикация патента:

Использование: изобретение относится к производству резинотехнических изделий и может быть использовано в химической промышленности в производстве резин, устойчивых к озонному старению. Сущность изобретения заключается в том, что бутадиеннитрильный каучук смешивают с поливинилхлоридом суспензионной полимеризации в соотношении 70 : 30 в присутствии стабилизатора - эпоксидной смолы ЭД - 20 в количестве 1 - 3 мас.ч. на 100 мас.ч смеси полимерных компонентов в резиносмесителе при 170 способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 2109773 3oС в течение 7 - 9 мин или при 160 способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 2109773 3oС в течение 14 - 16 мин при частоте вращения резиносмесителя 60 об/мин. Способ получения резин является экологически чистым, применение его дает возможность отказаться от применения эффективных, но высокотоксичных термостабилизаторов - органических и неорганических соединений тяжелых металлов. 3 табл.
Рисунок 1, Рисунок 2

Формула изобретения

Способ получения маточной смеси для озоностойкой резины на основе бутадиеннитрильного каучука с 26 мас.% нитрила акриловой кислоты смешением в резиносмесителе каучука и поливинилхлорида в присутствии стабилизатора при повышенной температуре, отличающийся тем, что в качестве поливинилхлорида используют поливинилхлорид суспензионной полимеризации в массовом соотношении с каучуком 30 : 70 соответственно, в качестве стабилизатора используют эпоксидную смолу ЭД-20 в количестве 1 - 3 мас.ч. на 100 мас.ч. каучука и поливинилхлорида, при этом смешение осуществляют при 167 - 173oС в течение 7 - 9 мин или при 157 - 163oС в течение 14 - 16 мин при частоте вращения резиносмесителя 60 мин-1.

Описание изобретения к патенту

Изобретение относится к производству резинотехнических изделий и может быть использовано в химической промышленности в производстве резин, устойчивых к озонному старению.

Одним из важнейших факторов, определяющих работоспособность резинотехнических изделий на основе непредельных каучуков, эксплуатируемых в атмосферных условиях, является стойкость к озонному старению. Обычно для ее повышения используют химические антиозонанты и воска. Однако во многих случаях они недостаточно эффективны. Одним из способов защиты от озонного старения является частичная замена непредельного каучука каким-либо озоностойким полимером, в частности поливинилхлоридом.

Система БНК-ПБХ при использовании каучука марки СКН-26 является термодинамически ограниченно совместимой, поэтому качество резин из этой композиции определяется условиями совмещения высокомолекулярных компонентов. Совместимость каучука с поливинилхлоридом падает при уменьшении содержания в каучуке акрилонитрильных звеньев и зависит от марки ПВХ: полимер, полученный методом суспензионной полимеризации, совмещается с БНК значительно хуже, чем эмульсионной полимеризации. В нашей стране в промышленном масштабе производят в основном суспензионный ПВХ, поэтому разработка способов получения озоностойких резин с высокими физико-механическими показателями на основе бутадиеннитрильного каучука марки СКН-26 и ПВХ суспензионной полимеризации является весьма актуальной.

Известны различные способы получения озоностойких резин на основе непредельных каучуков с насыщенными полимерами.

Известен способ получения озоностойкой кабельной изоляции на основе 10-50% ПВХ и 90-50% сополимера бутадиена и нитрила акриловой кислоты обычным способом смешения в оборудовании для смешения каучука с добавкой в ПВХ мягчителей. (Патент DE 2297194, 398541/00). Для получения более гомогенизированной смеси бутадиен-1,3 акрилонитрильного сополимера (75% бутадиена, 25% акрилонитрила) и ПВХ готовят композиции смешения 80 ч. каучука, содержащего следующие компоненты:

Каучук - 10

Канальная сажа - 65

Дибутилфталат - 25

Оксид цинка - 5

Фенил- способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 2109773 -нафтиламин - 1

Жирная кислота хлопковых семян - 1,5

Диметилмеркаптотиазол - 1,5

Сера - 1,5

с 20 ч. ПВХ, содержащего:

ПВХ - 100

Трикрезилфосфат - 95

Сульфат свинца - 2

Композицию вулканизуют 30 мин при 149oC. Для лучшего смешения рекомендуют проводить мастикацию каучука и пластификацию ПВХ при повышенной температуре нелетучим растворителем, например трикрезилфофатом. Полученный вулканизат характеризуется высокой разрывной прочностью, набуханием в газолине за 14 дней на 1,8%, морозостойкостю - 24,5oC, отсутствием термопластичности, стойкостью к концентрированным кислотам и щелочам, действию кислорода и света. Конкретных данных по озоностойкости не приведено. Отмечают, что с эмульсионным ПВХ получают лучше результаты, чем с суспензионным.

Известен способ получения озоностойких резин на основе непредельных каучуков с различными насыщенными полимерами на вальцах или резиносмесителе при температурах, определяющихся типом основного каучука, т.е. при 35способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 21097735oC для бутадиеннитрильных. При использовании защитных полимеров с высокой температурой размягчения температуры смешения повышали до 150oC. Вулканизацию резин производили при 143-160oC. Совмещение бутадиеннитрильного каучука с 40% акрилонитрильных звеньев (СКН-40М) с ПВХ в соотношении 70:30 производили на вальцах при 150oC. Время до появления трещин при концентрации озона с 0,1 об.% составляло 8,6 ч. (Ханин С.Е., Озоностойкостью резин на основе комбинаций полимеров. Автореф. канд. диссерт., М., 1984).

Известен также способ получения вулканизатов СКН-ПВХ с применением предварительного смешения каучука с полимером при температурах выше температуры плавления ПВХ (150-180oC) на любом смесительном оборудовании, обеспечивающем интенсивное перемешивание и необходимую температуру (Шварц А.Г., Динзбург Б. Н. Совмещение каучуков с пластиками и синтетическими смолами. М.: Химия, 1972, с. 64, 224).

В дальнейшем эти маточные компаунды смешивают с остальными ингредиентами при стандартных режимах. Для предотвращения деструкции ПВХ и каучука при высоких температурах вводят стабилизатор для ПВХ и антиоксидант для каучука. Для термостабилизации ПВХ применяют эффективные органические и неорганические соединения Pb, Cd и других тяжелых металлов, являющиеся высокотоксичными. Разработка режимов, позволяющих заменить токсичные термостабилизаторы менее эффективными, но безвредными весьма актуальна. (Фойгт И. Стабилизация синтетических полимеров против действия света и тепла. Под ред. докт. хим. наук Б.М. Коварской. - Л.: Химия, 1972, с. 60, 544).

Различные способы совмещения СКН-26 и ПВХ эмульсионной полимеризации в соотношении 70:30 описаны в следующей работе (Затеев В.С. Модификация дивинилнитрильных каучуков поливинилхлоридом для повышения озоностойкости. Автореф. канд. диссерт. Волгоград, 1972). Полимеры смешивали в лабораторном резиносмесителе при 80, 120 и 160oC в течение 5 мин. ПВХ использовали в двух модификациях: непластифицированный и пластифицированный дибутилфталатом. Полученные смеси сравнивали с композицией СКН-ПВХ, изготовленной совмещением полимеров на стадии латекса. Резиновые смеси изготавливали на вальцах при 40-50oC, вулканизацию производили при 143oC. Высокую озоностойкость наблюдали только при термомеханической обработке смеси в резиносмесителе при 160oC. В то же время установлено, что с увеличением температуры совмещения ухудшаются технологические свойства смесей. Замена механического перемешивания при повышенной температуре на термообработку в термостате при 100-160oC показала, что рост озоностойкости также наблюдается при температуре термостатирования 160oC. Наши эксперименты показали, что при использовании ПВХ суспензионный полимеризации метод термостатирования положительных результатов не дает.

В качестве ближайшего прототипа принят способ получения маточных компаундов, описанных в источнике: (Шварц А.Г. Динзбург Б.Н. Совмещение каучуков с пластиками и синтетическими смолами. М., Химия, 1972, с. 64, 224).

Сущность изобретения заключается в разработке способа получения высокоозоностойких резин на основе БНК марки СКН-26 или СКН-26М и суспензионного ПВХ в соотношении 70:30 с высокими физико-механическими показателями и маслостойкостью, используя интенсивное механическое перемешивание полимерных компонентов при повышенных температурах в режимах, не требующих применения эффективных и высокотоксичных термостабилизаторов и антиоксидантов. Это достигается введением стадии смешения каучука с полимером в присутствии эпоксидной смолы ЭД-20 в количестве 1-3 мас. ч. на 100 мас.ч. смеси высокополимеров в резиносмесителе при 170способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 21097733oC в течение 7-9 мин или при 160способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 21097733oC в течение 14-16 мин при 60 об/мин. Отличие предложенного способа от указанного выше состоит в том, что в качестве ПВХ используют ПВХ суспензионной полимеризации, взятый в соотношении с каучуком 30:70, в качестве стабилизатора - эпоксидную смолу ЭД-20 в количестве 1-3 мас.ч. на 100 мас.ч. СКН и ПВХ и процесс осуществляют в указанных условиях.

Уменьшение содержания стабилизатора - эпоксидной смолы ЭД-20 приводит к росту твердости по Шору полученной резины до 85-90 (при 0,5 мас.ч. ЭД-20), а увеличение до 4,0 мас.ч. - к снижению прочности до 10 МПа.

Введение вулканизующей группы в готовую смесь полимера производят на вальцах обычным способом при 40oC. Продолжительность перемешивания 20 мин. Вулканизацию осуществляют при 160oC в течение 20 мин.

Полученные вулканизаты характеризуются особо высокой озоностойкостью, хорошим физико-механическими показателями, высокой масло- и удовлетворительной бензостойкостью, удовлетворительной морозостойкостью (табл. 1). Все перечисленные характеристики определяли по ГОСТ. Озоностойкость характеризовали также скоростью трещинообразования методом релаксации напряжений (T= 30oC, деформация способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 2109773 =30%, (C3)=0,1 об.%).

Изобретение иллюстрируется следующими примерами.

Пример 1. В камеру резиносмесителя с заданной температурой 170oC вводят каучук со стабилизатором -эпоксидной смолой ЭД-20 в количестве 2 мас.ч. и поливинилхлорид в соотношении 70:30 и после выхода режима на стационар перемешивают смесь в течение 8 мин со скоростью 60 об/мин.

Введение вулканизующей группы, наполнителей и прочих ингредиентов производят на вальцах обычным способом при 40oC в течение 20 мин.

Примеры 2-10 аналогичны примеру 1. Различия заключаются в температуре, продолжительности смешения и частоте вращения резиносмесителя.

В табл. 1 приведены примеры получения маточных смесей при различных режимах и свойства полученных вулканизатов. Из данных табл. 1 видно, что оптимальными условиями получения резин с высокой озоностойкостью и хорошими физико-механическими показателями является смешение каучука СКН-26 с суспензионным ПВХ при 170oC в течение 8 мин при 60 об/мин резиносмесителя (пример 1). Допустимы колебания температуры 160-180oC с корректировкой продолжительности смешения (примеры 3-7). Увеличение температуры до 190oC приводит к ухудшению физико-механических свойств, а уменьшение ниже 160oC к ухудшению озоностойкости (примеры 7, 2). Снижение числа оборотов резиносмесителя до 30 об/мин (примеры 8-10) приводит к резкому падению озоностокости и других показателей.

В табл. 2 приведены результаты испытаний полученных ненаполненных и саженаполненных резин, произведенных по ГОСТ. Для сравнения представлены также результаты испытания на стойкость к озонному растрескиванию ныне выпускающихся отечественной промышленностью образцов резин на основе БНК марки СКН-18 (СМНТ и наирита (50/50) (шифр HO-68) и CKH-26-ПВХ-30 и CKH-180М (40/60) (шифр 764).

В табл. 3 приведены сравнительные данные по прочности на разрыв f, относительному удлинению способ получения маточной смеси для озоностойкой резины на   основе бутадиеннитрильного каучука, патент № 2109773 , сопротивлению раздиру, твердости по Шору A и эластичности для смеси CKH-ПВХ и CKH-26.

Из данных табл. 1-3 следует, что по озоностойкости полученные резины могут быть отнесены к группе особо стойких при физикомеханических показателях, маслостойкости и другим показателям не хуже, чем у резин специального назначения типа полихлоропреновых марки наирит. Преимуществом полученных резин является также экологическая безвредность технологии их получения, возможность отказа от применения эффективных, но высокотоксичных термостабилизаторов - органических и неорганических соединений тяжелых металлов.

Класс C08L9/02 сополимеры с акрилонитрилом

морозостойкая резиновая смесь -  патент 2522610 (20.07.2014)
полимерная композиция -  патент 2519402 (10.06.2014)
вулканизуемая резиновая смесь -  патент 2507224 (20.02.2014)
композиционный полимерный материал для палубных и напольных покрытий -  патент 2507223 (20.02.2014)
маслобензостойкая резиновая смесь -  патент 2507221 (20.02.2014)
вулканизующаяся полимерная композиция, способ ее получения, полимерный вулканизат и способ его получения -  патент 2506286 (10.02.2014)
полимерная композиция для изготовления труб -  патент 2505563 (27.01.2014)
вулканизуемая резиновая смесь -  патент 2503692 (10.01.2014)
твердый полимерный электролит для литиевых источников тока -  патент 2503098 (27.12.2013)
резиновая смесь на основе бутадиен-нитрильного каучука -  патент 2501820 (20.12.2013)

Класс C08L27/06 гомополимеры или сополимеры винилхлорида

стабилизирующая для галогенированных полимеров, не содержащая тяжелых металлов -  патент 2528994 (20.09.2014)
способ получения высоконаполненной древесно-полимерной композиции на основе поливинилхлорида -  патент 2527468 (27.08.2014)
способ получения экструзионной окрашенной поливинилхлоридной композиции и экструзионная окрашенная поливинилхлоридная композиция строительного назначения -  патент 2524386 (27.07.2014)
полимерная композиция для кабельного пластика -  патент 2520097 (20.06.2014)
способ изготовления профиля из пвх для оконных и дверных блоков с содержанием ионов серебра, обладающих антибактериальными свойствами -  патент 2508988 (10.03.2014)
способ изготовления профиля из пвх для оконных и дверных блоков с содержанием ионов серебра, обладающих антибактериальными свойствами -  патент 2508197 (27.02.2014)
композиционный полимерный материал для палубных и напольных покрытий -  патент 2507223 (20.02.2014)
4-(2,3-эпоксипропокси)-4'-(2,2-дицианоэтенил)азобензол, проявляющий свойства светотермостабилизатора поливинилхлорида -  патент 2502728 (27.12.2013)
электроизоляционная полимерная композиция -  патент 2501108 (10.12.2013)
поливиниловый спирт в качестве состабилизатора пвх -  патент 2500698 (10.12.2013)

Класс C08L63/02 простые полиглицидные эфиры бисфенолов

Наверх