способ нанесения многослойного износостойкого покрытия на изделия из железных и титановых сплавов

Классы МПК:C23C30/00 Способы покрытия металлическим материалом, отличающиеся только составом металлического материала, те не отличающиеся способом покрытия
C23C14/06 характеризуемые покрывающим материалом
Автор(ы):, , ,
Патентообладатель(и):Рыженков Вячеслав Алексеевич,
Нестеров Сергей Борисович,
Бодров Александр Анатольевич,
Миронов Константин Николаевич
Приоритеты:
подача заявки:
1997-03-28
публикация патента:

Изобретение может быть использовано в энергетическом и транспортном машиностроении для повышения износостойкости лопастей турбин и насосов, элементов двигателей и другого оборудования, процесс эксплуатации которого характеризуется одновременным воздействием различных видов износа. Поверхность изделия, на которое наносится многослойное износостойкое покрытие, полируется до чистоты Raспособ нанесения многослойного износостойкого покрытия на   изделия из железных и титановых сплавов, патент № 2106429 0,08 с последующей очисткой октадециламином. Затем на нее наносится слой переходного металла IV - VI групп периодической системы Менделеева, слой из оксида этого же металла и слой нитрида или карбида переходного металла IV - VI групп периодической системы Менделеева. 2 з.п. ф-лы, 1 ил.
Рисунок 1

Формула изобретения

1. Способ нанесения многослойного износостойкого покрытия на изделия из железных и титановых сплавов, включающий подготовку поверхности изделия, нанесение на нее слоя металла и слоя химического соединения металла, отличающийся тем, что подготовку поверхности изделия осуществляют полировкой до чистоты Raспособ нанесения многослойного износостойкого покрытия на   изделия из железных и титановых сплавов, патент № 2106429 0,08 с последующей очисткой октадециламином, в качестве слоя металла наносят переходный металл IV-VI групп Периодической системы Менделеева, в качестве химического соединения - нитрид или карбид переходного металла IV-VI групп Периодической системы Менделеева, а между слоями металла и химического соединения наносят дополнительный слой из оксида металла, нанесенного в качестве первого слоя.

2. Способ по п.1, отличающийся тем, что нанесение слоев осуществляют ионно-вакуумным напылением в едином замкнутом цикле с объемным нагревом изделия до температуры 400-500oС.

3. Способ по пп.1 и 2, отличающийся тем, что на подготовленную поверхность изделия последовательно наносят слой титана, промежуточный слой оксида титана и слой нитрида титана.

Описание изобретения к патенту

Изобретение относится к энергетическому и транспортному машиностроению и может быть использовано для повышения износостойкости лопастей турбин и насосов, элементов двигателей и другого оборудования, процесс эксплуатации которых характеризуется одновременным воздействием различных видов износа (каплеударная и абразивная эрозия, различные виды коррозии, эрозия-коррозия, кавитация, повышенная агрессивность среды, повышенное трение).

Известно техническое решение [1], заключающееся в нанесении покрытия из титанового сплава, осаждении пленки, состоящей из одного или нескольких элементов, ионной бомбардировки с получением твердой пленки с образованием твердого композиционного слоя, бомбардировки пленки ионами азота, кислорода или углерода.

Недостатками этого технического решения является неспособность обеспечения эффективной защиты металла лопаток от коррозионного и действующих одновременно коррозионного и эрозионного износов, что зачастую имеет место при эксплуатации оборудования.

Наиболее близким техническим решением (прототипом) к предлагаемому способу является способ нанесения износостойкого покрытия из нестехиометрического нитрила титана [2], включающий подготовку изделия, нанесение слоя титана и слоя нитрида титана при температуре 420-530oC.

Недостатком этого технического решения является нанесение двухслойного покрытия, т.е. отсутствие промежуточного слоя, что позволяет получить более эффективную защиту от различных видов коррозии. Кроме того, отсутствие единого замкнутого цикла с объемным нагревом уменьшает коррозионную и эрозионную стойкость покрытия изделия.

Техническим результатом предлагаемого технического решения является повышение износостойкости изделий из железных и титановых сплавов за счет существенного снижения каплеударной и абразивной эрозии, кавитации, эрозии-коррозии, различных видов коррозии (атмосферная, химическая коррозия, коррозионное растрескивание под напряжением, фретинг-коррозия) в процессе эксплуатации изделий.

Технический результат достигается предварительной подготовкой поверхности защищаемого изделия и последующим нанесением многослойного покрытия при различной толщине его составляющих в едином замкнутом цикле при объемном нагреве изделия. Формирование многослойного покрытия в едином замкнутом цикле обеспечивает подачу кислорода в необходимом количестве, требуемом для формирования оксида металла первого слоя определенной толщины.

Причем предварительная подготовка поверхности защищаемых изделий включает в себя ее полировку до значения Ra способ нанесения многослойного износостойкого покрытия на   изделия из железных и титановых сплавов, патент № 2106429 0,08 мкм (Ra - параметр шероховатости, характеризующий среднее арифметическое отклонение профиля) и очистку с использованием поверхностно-активных веществ, преимущественно октадециламина для удаления загрязнений с поверхности, в том числе и коррозионно-активных примесей (хлориды, сульфаты и др.), расположенных, как правило, на дне поверхностных трещин и каверн, что существенно повышает адгезию первого слоя покрытия. Это мероприятие в значительной степени определяет коррозионную стойкость многослойного покрытия.

Наносимый в качестве первого слоя покрытия металл обладает высокой коррозионной и химической стойкостью, второй слой, представляющий собой оксид металла первого слоя, еще в большей степени повышает коррозионную в химическую стойкость и предотвращает доступ кислорода, углекислоты к защищаемому металлу. Третий слой, в качестве которого наносят нитрил или карбид одного из переходных металлов IV - VI групп периодической системы Менделеева, существенно повышает эрозионную, в том числе и кавитационную стойкость защищаемого изделия.

На чертеже изображена принципиальная схема устройства, где 1 - защищаемое изделие, 2 - держатель, 3 - рабочая камера, 4 - катод - 5 анод, 6 - источник питания, 7 - электрическая дуга, 8 - источник питания для высокоскоростной бомбардировки поверхности изделия ионами аргона, 9 - дозирующее устройство, 10 - устройство предварительной очистки поверхности защищаемого изделия с использованием поверхностно-активного вещества (эмульсия октадециламина), 11 - ультразвуковая установка.

Предлагаемый способ включает в себя грубую очистку поверхности защищаемого изделия от загрязнений, полировку защищаемой поверхности до значения Ra способ нанесения многослойного износостойкого покрытия на   изделия из железных и титановых сплавов, патент № 2106429 0,08 мкм, тонкую очистку поверхности защищаемого изделия с использованием поверхностно-активного вещества (октадециламина) и ультразвуковой установки, сушку поверхности изделия после очистки, помещение изделия в вакуумную камеру устройства, создание рабочего вакуума в камере, объемный нагрев защитного изделия, дополнительную очистку и активизацию поверхности изделия за счет ее бомбардировки ионами аргона, формирование многослойного покрытия.

Процесс нанесения многослойного покрытия на изделие осуществляется в следующей последовательности.

После предварительной полировки до частоты Ra способ нанесения многослойного износостойкого покрытия на   изделия из железных и титановых сплавов, патент № 2106429 0,08 мкм и очистки эмульсией октадециламина 10 и ультразвуковой установкой (11) изделие 1 закрепляется в держателе 2, который в зависимости от формы и массы изделия обеспечивает его движение в различных плоскостях. В рабочей камере 3 создается вакуум 10-3 Па. Затем в камеру через полый катод 4 подается газ - аргон. После достижения рабочего давления 10-2Па создается напряжение между катодом и анодом 5 посредством источника питания 6 и образуется электрическая дуга 7. На изделие подается напряжение от собственного источника питания 8 для высокоскоростной бомбардировки поверхности изделия ионами аргона.

После этого осуществляется объемный нагрев. Температура изделия поддерживается на уровне, не превышающем значение в диапазоне 400-500oC. Нижнее значение температуры обеспечивает повышение адгезии покрытий на защищаемых поверхностях крупногабаритных изделий. Верхнее значение температуры обусловлено отсутствием структурных изменений и механических свойств металла изделий. Диапазон температуры определяется материалом, используемым для изготовления турбинных лопаток (углеродистые и хромистые стали).

Подачей напряжения устанавливается необходимый электрический ток между анодом и катодом, обеспечивающий испарение и ионизацию металла, используемого для формирования первого слоя покрытия. В результате последующего его осаждения образуется первый защитный слой, толщина которого определяется степенью агрессивности эксплуатационной среды изделий.

Затем в рабочую камеру через дозирующее устройство 9 подается кислород с объемным расходом, необходимым для формирования второго слоя необходимой толщины за счет формирования в результате химической реакции оксида металла, наносимого в качестве первого слоя.

После образования второго слоя перед подачей азота или углерода через дозирующее устройство 9 подается кислород с объемным расходом, необходимым для формирования третьего слоя необходимой толщины, обеспечиваются условия образования нитрида или карбида металла, наносимого в качестве первого слоя. Таким образом, нанесение всех слоев происходит в едином замкнутом цикле.

Соотношение толщин наносимых слоев определяется условием повышения эффективности износостойкости изделий при одновременном воздействии, в первую очередь, коррозии, абразивной, кавитационной и каплеударной эрозии без изменения структуры, свойств и установленных характеристик металла защищаемого изделия.

С учетом вышеизложенного, а также в зависимости от свойств применяемого для формирования первого слоя металла и используемых технологических газов определяются толщины слоев, находящихся в следующих диапазонах:

- B1 = 1-5 мкм,

- B2 = 0,01-0,1 мкм,

- B3 = 5-15 мкм,

где

B1 - толщина первого слоя,

B2 - толщина второго слоя,

B3 - толщина третьего слоя.

Многослойное покрытие, нанесенное на защищаемое изделие из углеводородной стали в ионно-вакуумной установке в едином замкнутом цикле и состоящее из трех слоев, в котором в качестве первого слоя используется титан толщиной 2 мкм, в качестве второго - карбид титана толщиной 0,05 мкм, в качестве третьего - нитрид титана толщиной 8 мкм при предварительной полировке поверхности до значения Ra = 0,08 и ее очистке с помощью октадециламина, позволяет, как показали результаты испытаний, повысить коррозионную стойкость в 12 раз, эрозионную стойкость при абразивном воздействии - в 7 раз, эрозионную стойкость при каплеударном воздействии - в 5 раз и кавитационную стойкость в 6 раз. Это в совокупности приводит к увеличению срока службы изделий, в частности, лопаток паровых турбин в 2-3 раза.

Класс C23C30/00 Способы покрытия металлическим материалом, отличающиеся только составом металлического материала, те не отличающиеся способом покрытия

жаропрочный сплав -  патент 2526657 (27.08.2014)
способ получения материала для высокотемпературного эрозионностойкого защитного покрытия -  патент 2522552 (20.07.2014)
сплав, защитный слой и деталь -  патент 2521924 (10.07.2014)
способ нанесения двухкомпонентных хром-алюминиевых покрытий на внутренние полости охлаждаемых рабочих лопаток газовых турбин и устройство для осуществления способа -  патент 2520237 (20.06.2014)
устойчивые к смачиванию материалы и изделия из них -  патент 2502826 (27.12.2013)
устойчивые к смачиванию материалы и изготовленные вместе с ними изделия -  патент 2495954 (20.10.2013)
покрытое изделие с нанослойной системой покрытия -  патент 2487781 (20.07.2013)
установка вакуумной обработки и способ вакуумной обработки -  патент 2472869 (20.01.2013)
листы термопласта с поверхностным покрытием, армированные волокном -  патент 2471889 (10.01.2013)
многослойное защитное покрытие для подложки, расположенной в или на транспортном средстве, подложка с указанным покрытием и способ формирования указанного покрытия на подложке -  патент 2471888 (10.01.2013)

Класс C23C14/06 характеризуемые покрывающим материалом

Наверх